
App:
 http://trix-$-dev.cfapps.io/swagger-ui

Grafana:
https://idb-grafana-616.cfapps.io/

https://idb-grafana-616.cfapps.io/

Please install
Postman or any other tool to make

requests to an API.

https://www.getpostman.com

https://www.getpostman.com

Functional Monitoring
Learning from your users through metrics

Ivo de Bruijn & Joost van Wollingen

Ivo de Bruijn
Software Test Engineer, bol.com

@instabruijn

Joost van Wollingen
Quality & Test automation, Xebia

@jpjwolli

5

Introduction

Observability

Build your own
dashboard

Demo

Wrap up

http://progress_bar_id

● 8+ million active customers

● 1400+ employees

● Operating in a highly competitive market

● 380+ people in the IT department

● 60+ Scrum teams

● 600+ microservices + legacy

● Currently migrating to the cloud

http://progress_bar_id

http://progress_bar_id

http://progress_bar_id

Months to Weeks

Weeks to Days

Days to Hours

Every commit

Several days of manual testing to find bugs

Absolute reliance on fully automated pipelines

Mark Hrynczak, Do Less Testing, Atlassian

Information Provider Quality Accelerant

[..] in which the teams focus on quality, work on problem
prevention instead of detection, and begin testing as early

as possible.

https://testopsblog.wordpress.com/2017/03/29/what-is-continuous-testing/

https://bolcom.github.io/docker-for-testers/

http://progress_bar_id

[..] shift-right includes the acceptance and deployment of
software, A/B testing, etc… In other words, software

testing in a production environment.

http://blog.qatestlab.com/2017/07/04/shift-right-testing/

Observability
Testing in production

Observability Controllability

https://en.wikipedia.org/wiki/Software_testability
https://dryicons.com/free-icons/control
https://dryicons.com/free-icons/looking-glass-icons
https://dryicons.com/icon/single-test-tube-icon-5815

The degree to which it is possible to observe
(intermediate and final) test results.

Observability Controllability

https://en.wikipedia.org/wiki/Software_testability
https://dryicons.com/free-icons/control
https://dryicons.com/free-icons/looking-glass-icons
https://dryicons.com/icon/single-test-tube-icon-5815

The degree to which it is possible to control the state of
the system under test (SUT) as required for testing.

Observability Controllability

https://en.wikipedia.org/wiki/Software_testability
https://dryicons.com/free-icons/control
https://dryicons.com/free-icons/looking-glass-icons
https://dryicons.com/icon/single-test-tube-icon-5815

In control theory, observability is a measure of how well
internal states of a system can be inferred from knowledge of

its external outputs.

https://en.wikipedia.org/wiki/Control_theory#Controllability_and_observability

Sensor

SystemController

https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/System

Controllability is related to the possibility of forcing the
system into a particular state by using an appropriate control

signal.

https://en.wikipedia.org/wiki/Control_theory#Controllability_and_observability

Sensor

SystemController

Logs

Metrics

Tracing

Health checks

Internet
Service

Metrics time
series database

Browser

Other service

Clients

Aggregated
logging

Data
visualization

Log
management

Add trace id here

Retrieve metrics

Retrieve logging

https://dryicons.com/free-icons/looking-glass-icons

Distributed Systems Observability
by Cindy Sridharan

● Use metrics, logging and traces for testing

● Test and detect failure modes during
development that would cause incidents
on production

● Safely deploy and rollback based on what
you measure

● Understand, debug and improve your
system based on what you measure

Classical monitoring Challenges
●

●

●

Functional monitoring Challenges
●

●

&

https://www.stackstate.com/

Create your first dashboard

Visualize metrics Metrics store

Interact with SUT HTTP benchmark tool

Trix service

Browser
Other service

Gauge Counter Histogram

http://bit.do/funcmon

Coffee Break
We continue at 11:30

● Make groups of 3 to 4 persons
● Think back on the last production incident you’ve been

involved in and make sure you can answer the following:
○ What happened & why did it happen?
○ How did you become aware of it? Could you measure it?
○ What did you learn from the incident?
○ What are you doing differently from now on?

● Share stories in your group
● Share the story that is the most interesting/cool/impactful

with the entire class

Live demo +
code samples

“A Counter reports merely a count over a specified property. ”

Counter counter = Counter
 .builder("counterName")
 .description("what you like")
 .tags("tst", "serviceX")
 .register(registry);

counter.increment();

“A Timer will report at least the total time and events count of specific time series.”

SimpleMeterRegistry registry = new SimpleMeterRegistry();

Timer timer = registry.timer("trix.eventName");
timer.record(() -> {
 try {

...execute some code…

 } catch (InterruptedException ignored) { }
});

Simple Powerful Heavy load

Focus/Defocus

Questions?

● Engineer of the Day

● Get a TV screen at your team and
show the dashboards 24/7

● Observability as part of DoD

● Do a testability workshop with your team
https://leanpub.com/softwaretestability

https://leanpub.com/softwaretestability

● What are you going to measure now?

● What will you do differently?

● Please give us your feedback!

