
Kristoffer Nordström
@kristoffer_nord

Taming the Terminal-based
Applications and Testing Them

1

0. Copy the folder from the USB stick to your hard drive.

1. Pop in the USB stick provided
2. Open VirtualBox
3. ”Machine” -> ”Add…”
4. Navigate to the USB stick, open the folder and open

the .vbox file
5. Start the new virtual machine

User: pft
Password: pft

Getting started

2

Long version:
Python is an interpreted, interactive, object-oriented
programming language.
It incorporates modules, exceptions, dynamic typing, very high
level dynamic data types, and classes.
Python combines remarkable power with very clear syntax. It
has interfaces to many system calls and libraries, as well as to
various window systems, and is extensible in C or C++.
It is also usable as an extension language for applications that
need a programmable interface.
Finally, Python is portable: it runs on many Unix variants, on
the Mac, and on Windows 2000 and later.

Short version:
Python is fun and easy to learn. It is a programming language
very suitable for simple tasks that testers face on a day-to-day
basis.

What is Python?

3

Don’t worry, with these commands you should be able to get
around just fine today:

• CTRL + ALT + T
• Opens	a	terminal	in	Ubuntu

• cd <folder_path>
• Enters	the	folder_path	specified

• ll
• Lists	the	content	of	the	current	directory

• mkdir <folder_path>
• Creates	a	new	folder

• rm –rf <folder_path>
• Removes	a	folder	(can	removes	files	as	well,	-r	

not	needed)
• cat <filename>

• Reads	the	file	and	prints	it	input	to	the	terminal
• touch <filename>

• Creates an	empty	file

Don’t know any UNIX?

4

We will be using:
• A Virtual Machine running Ubuntu Desktop as the OS
• SublimeText 3 as the main Python editor

• With Anaconda package installed for.
• Code autocompletion
• Lint check

• Use command `subl` to start from terminal
• Bpython for a fancy REPL
• Python 2.7

• All the skeleton code and answers for the exercises are located
under the folder ’~/TTBA_Exercises/solution/’

Other information

5

[Learning goals]
Learning goals for today is to learn the Python syntax, get
comfortable with Python and see some concrete examples on
how you can make use Pexpect and Python to automate and
even check terminal based applications.
You should be able to go home, explore and learn more of
Python on your own after today.

[Other]
Bugs may have found their way into the printed material,
you’re testers I’m sure you will… find them… report a bug…
embarrase me…

You are testers I expect you to explore the concepts put forth
today.
Fill in the blanks between the lines in the material, experiment,
and have some fun.

Also please experiment in the REPL or SublimeText while I’m
talking. It’s encouraged.

Ask questions…

And finally…

6

The scaling of your display is likely all wrong.
Please start a terminal (CTRL+ALT+T) and then issue these
commands:

$ gsettings set org.gnome.desktop.interface scaling-factor n

$ gsettings set org.gnome.desktop.interface text-scaling-factor n

Speaking of bugs...

7

REPL
Import

BPython
Indentations

Variables

Getting the environment up and running

8

1. Start a terminal
2. Create a temporary folder to hold your scripts and enter it
3. Start SublimeText by typing: subl helloworld.py
4. Add the line and save: print ”Hello World”
5. Switch back to the terminal and run: python helloworld.py

Running Python from the cmd line

9

”The REPL”
Read – Eval – Print – Loop
Simply start it with the command: python

The REPL is an interactive interpreter that takes single line input, interpets it and
returns the result to the user.
To exit the REPL simply provide the end-of-file character (CTRL+D Unix, CTRL+Z
Windows). Or use one of the commands quit() or exit()
The REPL is a great way for you to explore new python commands or to do simple
one-off instructions intended to be thrown away later.
pft@PFT-ubuntu:~# python

Python 2.7.6 (default, Mar 22 2014, 22:59:56)
[GCC 4.8.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> print “Hello World”

Hello World

>>> raw_input()

Type here
’Type here’

>>>

Start the REPL and print a string to the terminal like the example above.

10

Import
import_stmt ::= "import" module ["as" name] (",“ module ["as" name])* |

"from" relative_module "import" identifier ["as" name] ("," identifier ["as" name])* |
"from" relative_module "import" "(" identifier ["as" name] ("," identifier ["as" name])* [","] ")" |
"from" module "import" "*"

The way to import modules containing code you need.

import shutil

import random as ra
from os import *

Try the examples above, then try importing the module time
and call time.sleep(10).

What happened?

from datetime import datetime

from datetime import datetime as dt

11

BPython
”bpython is a fancy interface to the Python interpreter for Linux, BSD, OS X
and Windows (with some work).”

A prefered alternative to the standard REPL included in Python. Offers features such as:

• In-line syntax highlighting
• Readline-like autocomplete with suggestions displayed as you type.
• Expected parameter list for any Python function.
• "Rewind" function to pop the last line of code from memory and re-evaluate.
• Send the code you've entered off to a pastebin.
• Save the code you've entered to a file.
• Auto-indentation.

Start ̀ bpython` from the terminal and print again to the terminal a few times.
Next test the ”CTRL+S” command and save to a file.
Exit BPython and take a look at the output file, try rerunning the file with Python.

12

Blocks of code in are Python are grouped by indenting the code with either a
tab or spaces.
De facto standard is to use 4 spaces of indentation per level.
Also a ’:’ is used at the end of the parent level (class, if-statement, etc)

Indentations – Forget {}

if myVar == True:

print ”Hit”
else:

print ”Miss”

for number in range(0,4):

print number

while myCondition == 1:

print ”First Level”
if otherCondition == True:

print ”Other condition was True”

Do not mix tabs and spaces in the same file as that is not allowed!
"IndentationError: unexpected indent"

Other languages typically use {} to enclose blocks of code. Not so in Python.
Try importing support for curly braces from the module __future__:

from __future__ import braces

13

Objects are Pythons abstraction for all data.
You can assign values to objects such as strings, integers, floats, but also
more complex objects such as lists, dictionaries, classes, and even
methods.

Objects

#A String
obj = ’Python For Testers’

#An integer
numb = 9

#A list

My_list = [’FirstItem’, ’SecondItem’, ’AndSoOn’]

#A float

Float_obj = 0.9

From the REPL try assigning values to objects and then print them (`print obj`).

Also adding two numbers together and see the result (`numb + Float_obj`), assign the result
of that to another object (`result = numb + Float_obj`). Other modifiers you can try are: -, /, %
Explain the difference between % and / when used on two integers.

What happens if you add two or more strings?
Explore the operators ’+=’ and ’-=’ (myvalue += value)

14

A lot of times we want to print a string that is comprised of
several strings.
In Python it’s really easy to do, all it takes is the use of the
+ operator:

firstName = ’Kristoffer’

lastName = ’Nordström’

print firstName + ’ ’ + lastName

Concatenating strings

15

outer_name = ”Kristoffer”

if condition is True:

inner_name = ”Nordstrom”

print outer_name + ’ ’ + inner_name

else:

other_name = ”Andersson”

print ”inner_name not available”

print ”inner_name or other_name maybe available”

Scope in Python

16

Sometimes we need to explicitly cast the type of the object to another type in
order to do something.

Most common is to cast something into the type string when printing objects.
You can print single integer, but if you want to print a string together with (for
example) an integer you need to cast it before concatenating the objects.

Casting to other types

17

number = 2

greeting = ’Hello ’

#Prints ”Hello 2 times”

print greeting + str(number) + ’ times’

But we also sometimes need to convert from for example a float to an integer.

number = 2.0

print number

print int(number)

Exercise – Hello {Name}

Write a small Python script that asks for your
name and then prints out:

Hallo {Name} en welkom naar Nieuwegein!

Use a raw_input(), print, and concatenating
strings.

18

Exercise the installer with PExpect

Pexpect General
Pexpect expect

Pexpect sendline

Exercise v.1

19

Pexpect makes Python a better tool for controlling other
applications.
Pexpect is a pure Python module for spawning child applications;
controlling them; and responding to expected patterns in their
output.
Pexpect can be used for automating interactive applications such as
ssh, ftp, passwd, telnet, etc. It can be used to a automate setup
scripts for duplicating software package installations on different
servers. It can be used for automated software testing.

Source: http://pexpect.sourceforge.net/doc/

Pexpect

20

Distutils is a standard as to how a developer can choose to
distibuted the python module in source code form.
If you download a Python module, it comes in a *.tar.gz or
*.zip file, and if you find a setup.py file when you extract it
then you have encountered a Python module distributed
with Distutils.
To install the package simply execute:

Install Python Packages – Distutils

In the folder /opt/PFT/pexpect/ you find the file pexpect-2.3.tar.gz.
Unpack it (`tar xvzf pexpect-2.3.tar.gz`) and enter the extracted folder.

Next install your first 3rd party python module using the command above.
In bpython try importing pexpect to validate it installed properly.

python setup.py install

21

Pexpect works by that it starts an external process and then
”expects” certain output from that terminal based process.
At that point it can send input back into the process
depending on the output encountered.

It supports regular expressions in the output that it expects
from the process started.
If you want what is happening with pexpect to be written
to the screen you simply set logfile to sys.stdout (that
could be a file object instead for logging).

Pexpect - Expect

import pexpect, sys

child = pexpect.spawn(’uname -a’)
child.logfile = sys.stdout

child.expect(’.*Linux.*’)
print ”We’re on Linux! Halleluja!”

22

Once pexpect finds a line it expects, it then has the option
of sending a line back into the process.
It is simply done by invoking the command: sendline()
You can send any string you want to, if you want to send
an empty line, i.e an enter stoke just send \n.

Pexpect - Sendline

import pexpect, sys

child = pexpect.spawn(’python ~/myscript.py’)
child.logfile = sys.stdout

child.expect(’What is your name:’)
child.sendline(’Kristoffer’)
child.expect(’Hello Kristoffer, press enter to continue:’)
child.sendline(’\n’)

23

If you run the python script installer.py (under
~/TTBA_Exercises/) you will find a terminal based installer
for a 3rd party tool.
Explore it and learn about its behavior.

Then write a python script (runner.py) that uses pexpect
and exercises the installer and installs the software to the
system.

For your convenience you can find the questions that the
installer asks in the file questions.txt

The installer can exit with:

- 'Finished installation successfully‘

Exercise - Pexpect

24

Expecting different answers

Casting types
if/else

Booleans
Lists and Dicts

Pexpect multiple choices

Exercise v.2

25

if_stmt ::= "if" expression ":" suite
("elif" expression ":" suite)*
["else" ":" suite]

If/Else

An ”if” statement is used to decide if a block of code
(”suite”) is to be executed.
Can be followed by ”elif” and ”else”.

x = -1
name = ’Lisa’

if x < 0:
print ”X is negative”

if name == ’Lisa’:
print ”Name is Lisa”

Try out the examples above in sublimetext and a .py file

if name == ’Robert’:

print ”Hi Robert”
elif name == ’Ann’:

print ”Welcome Ann”

else:

print ”Howdy stranger”

26

fullName = ”Kristoffer Nordstrom”

if ”Nord” in fullName:

print ”Name contains string Nord”

if ”Schoots” not in fullName:

print ”Schoots not part of Name”

A boolean is a data type that evalutes to the values ”True”
or ”False”.

Boolean

condition = True
if condition is True:

print ”Condition was True”

condition = False
if condition is True:

print ”Condition was True”
else:

print ”Condition was False”

condition = True
if condition is not False:

print ”Condition was True”

Try out the examples above in the terminal

first = False
second = True

if first is False and second is True:
print ”Conditions was met”

27

Python offers several data types to store data, two of them are lists and dicts.

A list contains just that, a list of data objects (strings, numbers, booleans, even
methods) that you can pass around.
A dict is as dictionary where every data object also has a key.

Python Data Types – List & Dict

Names = [’James’, ’Michael’, ’Paul’]

print Names

Names.append(’Huib’)

Names.append(’Kristoffer’)

print Names

print Names[0]

print Names[2]

Names.remove(’Kristoffer’)

print Names

print len(names)

Person = {'First': 'Bilbo', 'Last': 'Bagger'}

print Person

Person['Address'] = 'Bag End, Bagshot Row'

print Person

print Person['First'] + ' lives at ' + Person['Address']

Person.pop('Address')

print len(Person)

print Person.keys()

Use the code examples above to experiment with creating your own
lists and dicts.
The dict method keys() returns a list, can you use that in a for loop?

28

Pexpect also supports expecting multiple options and then
allowing you to act according to the result.

Instead of supplying one string of what to expect, simply
supply a list of strings that are valid results.

The result of expect() is then an integer indicating which of
the strings that was encountered.

Pexpect – Expect

import pexpect, sys

child = pexpect.spawn(’uname -a’)
child.logfile = sys.stdout

result = child.expect([’.*ubuntu.*’, ’.*redhat.*’])
if result == 0:

print ”We’re on Ubuntu!”
elif result == 1:

print ”We’re on RedHat!”

29

Exercise – v.2
Extend your runner.py to expect the different possible results
from the installer and that prints the result depending on what
occured.

Be aware that the installer can exit with the different messages:

- 'Finished installation successfully‘

- 'An error occurred during installation'

30

Exercise v.3
Fetch the questions/answers from a list

For-loops
Zip()

31

for_stmt ::= "for" target_list "in" expression_list ":" suite

For loop and Range()

The for loop is your way to iterate over several objects in a collection.
It is also the way you repeat a block of code X number of times using the range() method.

range() returns a list (collection) of numbers in the range specified.

for i in range(0,5):

print i #Will print numbers 0 to 4

Names = [’Luke’, ’Leia’, ’Chewbacca’]

for name in Names:
print name #Will print names in list

Try exploring the range() method in BPython, using parameters start, stop, and
step for the method.
And then use it in a for-loop.

Also see if you can create a list of names and in a for-loop print different messages
depending on what the name is.

32

This function returns a list of tuples, where the i-th tuple contains the i-th element
from each of the argument sequences or iterables.
The returned list is truncated in length to the length of the shortest argument
sequence.

>>> x = [1, 2, 3]

>>> y = [4, 5, 6]

>>> zipped = zip(x, y)

>>> zipped

[(1, 4), (2, 5), (3, 6)]

zip()

33

What if you have two different lists and want to iterate over them both at the
same time?
Could you use the output of zip(x,y) in a for loop?

Exercise – v.3
Extend your runner.py to fetch the questions and answers from
two lists (answers & questions) in a for-loop that calls sendline()
and expect()

34

questions = ['Installation path \[/opt/esconfs\]:',
'Full or light installation \[Full/Light\]:',
'Deploy web server \[Y/N\]:',
'On which port \[80\]:',
'Admin user account \[admin\]:',
'Admin acount password \[\]:',
'Backup previous data \[Y/N\]:',
'Backup path \[~/esconfs_backup/\]:',
'Install with these setting \[Y/N\]:']

answers = ['/tmp/esconfs',
'Full',
'Y',
'80',
'admin',
'esconfs',
'Y',
'\n',
'Y']

Structuring our code

Classes
Methods

Terminal Colors

Exercise v.4

35

Methods are your way of creating logical groups of code that you want executed.
If you are executing the same lines of code multiple times, perhaps with different
parameters, then consider creating a separate method for that.
Multiple parameters into a method are simply comma-separated.
Use `return` to hand back data from the method.

Methods()

name = ”Adam”

print ”Hello ” + name
name = ”Bob”

print ”Hello ” + name

name = ”Cecilia”

print ”Hello ” + name

name = ”Donna”

print ”Hello ” + name

def Hello(name):

print ”Hello ” + name

Hello(”Adam”)

Hello(”Bob”)

Hello(”Cecilia”)

Hello(”Donna”)

def Hello(name):

print ”Hello ” + name

names = [’Adam’, ’Bob’, ’Carl’, ’Donna’]

for name in names:

Hello(name)

This Could be this… Or even this

Try creating your own method that takes none, one, and several arguments
as input.
Mix the input arguments as strings, numbers, lists etc.

36

Classes are your way of storing data and logic in one container.
Declaring a class is like specifying the blueprint.
Instantiating it into an object is like building the house from the blueprint.
Classes can therefore contain both variables and methods. The ”self” variable refers to the
class-object itself.

Classes

class OtherClass: #Here is the blueprint below

counter = 0

def testMethod(self):

print "Hello"

def otherMethod(self):

self.counter += 1

print "I have been called " +
str(self.counter) + " times"

if __name__ == '__main__':

m = OtherClass() #Here we create the house

m.testMethod()

m.otherMethod()

m.otherMethod()

class MyClass:

def __init__(self, counter): #Constructor

self.value = counter

def otherMethod(self):

print ”Initial value: ” + str(self.value)

if __name__ == ’__main__’:

m = MyClass(3)

m.otherMethod()

37

When working in a terminal a nice feature for your scripts can
be to color code the output depending on the context.
Simply print the ANSI escape sequences beginning with the
code for the desired color and then the end sequence to reset to
normal.

Terminal Colors

print '\033[92m’ + ”In green” + '\033[0m’
print '\033[94m’ + ”In blue” + '\033[0m'

class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'

print bcolors.OKGREEN + ”In green” + bcolors.ENDC
print bcolors.OKBLUE + ”In blue” + bcolors.ENDC

The code above will work in Unix:es (Solaris, OS X ,
Linux) and windows (provided you enable ansi.sys)

To enable ansi.sys in Windows:
http://support.microsoft.com/kb/101875

Hint: a finished module/code snippet is available
under ~/TTBA_Exercises/

Working but not so pretty… Much better

38

Exercise – v.4
Create a class (positiveflow.py) that contains the lists of questions and
answers, and that also provides two methods for retrieving these lists.

- getQuestions()
- getAnswers()

Break away the code responsible for executing (sendline() & expect())
into a separate class responsible for that (class: executor.py).
Provide a method runTestCase that takes as input parameters:

- which cmd to use to start the installer
- A list of the questions
- A list of the answers

Fetch the lists in runner from positiveflow and the send them into
executor.

39

Checking if the installer succeeded

os.path.join
os.path.isfile
os.path.isdir

Exercise v.5

40

Python runs on different systems and the scripts you write are
cross-platform. But only as much as your paths in the code.
The os.path module contains methods for you to create code
that runs on different OS:es where folders are separated by ”\”
or ”/”.

os – path manipulation

import os.path

print os.path.join('one',
'two',
'three')

import os.path

base, end = os.path.split(’/one/two/three’)

print base
print end

Try the examples above and watch the output.
Then try the method os.path.splitext() on the string below and explain
what it does:
’c:\\tmp\\myfile.txt’

41

os.path provides two methods to check if a file or folder exists:

- os.path.isdir()
- os.path.isfile()

os – verify file/folder

import os.path

result = os.path.isdir(’/tmp/’)
if result is True:

print ”Folder /tmp/ exist.”
else:

print ”Folder /tmp/ does not exist.”

Try the examples above and watch the output.

42

import os.path

result = os.path.isfile(’/temp.log’)
if result is True:

print ”File /temp.log exist.”
else:

print ”File /temp.log does not exist.”

Exercise – v.5
Create a class (verifier.py) that verifies if the installation passed
or failed based on the existance of the following test artifacts:

Folder: {InstallationPath}
File: {InstallationPath}/success.log

In the __init__() method for the class set the installation path as a
member variable.
Provide a method (verifyInstallation()) that checks if the artifacts
above exists.

43

Breaking apart test code and test data

File read

Exercise v.6

44

The last example where a for loop is used to iterate over the
file object. This is memory efficient, fast, and leads to simple
code

Open the file: /opt/PFT/somefile

File Open - Read
file_object = open(name, ’o’)
file_object.read()
file_object.readline()

f = open(’test.txt’, ’r’)

entire_file = f.read()
f.close()

f = open(’test.txt’, ’r’)
first_line = f.readline()
#If readline() returns empty string it means EOF
f.close()

f = open(’test.log’, ’r’)
for line in f:

print line
f.close()

45

A string variable contains a method called strip() which
removes trailing whitespaces and newlines from strings.

Create a string below with a trailing \n and print it.
Use strip() and print the result of that operation.

String strip()

46

file_object = open(name, ’w|a’ [, buffering])
file_object.write(string)
file_object.close()

File Write

Open a file for writing or appending data.
buffering: ’0’ means unbuffered, ’1’ line buffered, other numbers for buffered bytes.
’wb’ for writing binary data.
write() takes a string of data as input to be written to the file object.

f = open(’test.txt’, ’w’)
f.write(’Data into file’)
f.close()

f = open(’test.bin’, ’wb’)
f.write(binary_data)
f.close()

f = open(’test.log’, ’w’, 0)
f.write(”Dark Side\nLight Side”)
f.close()

Try opening a file and writing a string of text into it.
Write several times into a file, perhaps inside a for-loop…
Experiment with the modes ’w’ and ’a’, what’s the difference`?

47

Exercise – v.6
Rename the class positiveflow.py into testcase.py and rename the
class accordingly.

Next change the __init__ to take an argument for which testcase
file to read from, and then in the constructor open the file and
read every other line to a answers-list and a questions-list.

Bonus points if you add a check to see if the testcase file exists.

Leave getAnswers() and getQuestions() like they are.

48

Working with 3rd party modules

Email capability

Exercise v.7

49

In ~/TTBA_Exercises/ there is a module called mailgun.py that you should
copy into your working folder.

Import the Mailgun module (from mailgun import Mailgun) and create a
mailgun object.
The module has a method called sendEmail() that takes four input
parameters (strings):

-sender: The mail address of the sender
-to: The mail address of the recipient
-subject: The subject of the mail
-message: The message included in the email

Mailgun class

50

from mailgun import Mailgun

mg = Mailgun()
mg.sendEmail(’my@address.com’,

’your@address.com,
’Fancy title’,
’Staggering content’)

Exercise – v.7
Use the mailgun module to extend your verifier class so that it
sends an email if the test fails or passes.

51

Gather test artifacts

Os
Shutil

Zipfiles
Timestamps

Exercise v.8

52

This module provides a portable way of using operating system dependent
functionality.
If you just want to read or write a file see open(), if you want to manipulate paths, see
the os.path module.

os

import os

print os.environ

os.putenv(‘Test’, ‘Value’)

print os.environ

import os

print os.getcwd()

os.chdir(‘/tmp/’)

print os.getcwd()

os.makedirs(‘my_folder’)

print “Content of /tmp/:”

for item in os.listdir(‘.’):

print item

Also investigate the commands:
- os.getlogin()

- os.chmod()
- os.chown()

https://docs.python.org/2/library/os.html

53

The shutil module offers a number of high-level operations on files and
collections of files.
In particular, functions are provided which support file copying and
removal.

shutil

import shutil

shutil.copy(‘src_file.txt’, ‘/tmp/destination_file.txt’)

import shutil

shutil.move(‘/tmp/src_folder/’, ‘/tmp/dest_folder/’)

Try using the method shutil.rmtree(path) to delete the folder ‘/tmp/dest_folder/’.

54

A common need is to get the current date and time in order to create
a timestamp.
The DateTime module provides such a tool.
You can also use the method strftime() to format your timestamp.

DateTime

import datetime

N = datetime.datetime.now()

print N

print N.hour

print N.minute

print N.second

from datetime import datetime

N = datetime.now()

Timestamp = N.strftime(’%Y%m%d-%H%M%S’)

print Timestamp

import datetime

N = datetime.datetime.now()

Diff = datetime.timedelta(days=3)

print N+Diff

Experiment using hours, minutes,
or something else in timedelta()

Also have a look here for strftime
paraneters:
http://linux.die.net/man/3/strftime

55

Python offers the support to create zip archives.
Limitations:
The zipfile module does not support ZIP files with appended comments, or multi-disk ZIP
files.
It does support ZIP files larger than 4 GB that use the ZIP64 extensions.

ZipFile –Zip archives

import zipfile

zipf = zipfile.ZipFile(’myfile.zip’, 'w’, zipfile.ZIP_DEFLATED)
zipf.write(’file.txt')
zipf.close()

import zipfile

zipf = zipfile.ZipFile(’myfile.zip’, ’a', zipfile.ZIP_DEFLATED)
zipf.write(’fileTwo.txt')
zipf.close()

Create the files file.txt and fileTwo.txt and then try the code examples
above.
Next from the terminal run: unzip

56

Exercise – v.8
Extend the class verifier with a method gatherTestArtifacts() that
creates a temporary folder, and copies the artifacts of an
installation (success.log or fail.log) into the temporary file into
the folder.

Then it should create a zipfile archive with the timestamp of the
following format:

Testartifact_20150603-140213.zip

Next use the mailgun method send sendEmailWithAttachement() in
the mailgun module instead and attach the zipfile created to the
email.
This method takes the same four input parameters as before but
also a fifth method specifying the path to the file add as an
attachement.

57

Verify REST API

Requests

Exercise v.9

58

Pip is a package management system used to install and manage
software packages written in Python.
Many packages can be found in the Python Package Index (PyPI).

The Python Package Index or PyPI is the official third-party software
repository for the Python programming language.
Python developers intend it to be a comprehensive catalog of all open
source Python packages.

The strength of pip is that it is very easy to use.

pip install <package-name>

Install the following package using pip:
- requests

Install Python Packages – pip

59

JSON is an open standard format that uses human-readable text to transmit data
objects consisting of attribute–value pairs. It is used primarily to transmit data
between a server and web application, as an alternative to XML.
Python contains excellent support for serializing data objects to and from JSON.

JSON – JavaScript Object Notation

Play around with the two exercises above in order to learn how to deal with
data object, seralizing to json and back.
Use other data types as well to see how they are represented:
- Booleans
- Integers
- Floats

import json

badGuy = {”name”:”Sauron”, ”Occupation”:”Necromancer”,
”Address”: ”First tower on the left in Dol Guldur”,
”Interests”: [”Hunting hobbits”, ”Polishing rings”],
”Rings”: 0}

print badGuy
print json.dumps(badGuy)
print json.dumps(badGuy, sort_keys=True, indent=4)

f = open(’storage.json’, ’w’)
f.write(json.dumps(badGuy, sort_keys=True, indent=4))
f.close()

import json

f = open(’storage.json’, ’rb’)
villain = json.loads(f.read())

print villain

60

” Requests is an Apache2 Licensed HTTP library, written in Python, for human beings.
Python’s standard urllib2 module provides most of the HTTP capabilities you need, but the API is
thoroughly broken. It was built for a different time — and a different web.
It requires an enormous amount of work (even method overrides) to perform the simplest of tasks.
Things shouldn’t be this way. Not in Python.”

http://docs.python-requests.org/

Requests: HTTP for Humans

Try using requests.get() towards the URLs below and inspect the response objects:

• http://localhost/pft
• http://localhost/despicableme

61

>>> r = requests.get('https://api.github.com/events')

>>> r = requests.post("http://httpbin.org/post")

>>> r = requests.put("http://httpbin.org/put")

>>> r = requests.delete("http://httpbin.org/delete")

Requests – For REST API:s
Calling REST API:s using requests and Python couldn’t be easier.

Including parameters.

>>> payload = {'key1': 'value1', 'key2': 'value2'}

>>> r = requests.get("http://httpbin.org/get", params=payload)

>>> print(r.url)

http://httpbin.org/get?key2=value2&key1=value1

Try calling these two REST API:s including a JSON-payload
containing the string ”name”.
Hint: {”name”: ”Kristoffer”}

[GET] http://localhost/sayhello
[POST] http://localhost/createentry

After the POST request, look under the folder ”/opt/PFT/rest/

62

If an error occurs in your code then an exceptions going to
be thrown from the code and the execution is going to be
halted.
Standard practice is to surround such blocks of code with a
try/except statement in order for our code to have a chance
to catch the exception being thrown in order to decide
what to do with it.

It is also possible to catch specific and even several
exceptions

Try/Except

63

try:
...
{Your code that can throw exceptions}
...

except ValueError:
print "Oops! That was no valid number. Try again...“

except (RuntimeError, TypeError, NameError):
pass

except:
print ”An unspecified error occured”

Exercise – v.9
Extend the class verifier and the method verifyInstallation() so that
it makes a call to the REST API that the installer starts.

The REST API is located at the following address as a simple
GET:

http://localhost:3369/ttba

You will need to surround the REST call with a try/except block
to catch if the REST API isn’t running.

64

Command line
input

optparse

Exercise v.10

65

Often you want your python script to support command line arguments as
inputs in order to make them more reusable and flexible.
While there are a lot of interesting 3rd part modules, optparse is the de facto
choice from the stdlib shipped with Python.

Optparse – Command line input

Try updating the data digger exercise to support different files as input
arguments.
Add the keywords as options as well.

import optparse

par = optparse.OptionParser()

par.add_option("-n",
"--noarg",
action="store_true",
default=False)

par.add_option("-w",
"--withargs",
action="store",
help="Sets withargs to value provided",
dest="withargs")

options, args = par.parse_args()

print options.noarg
print options.withargs

import optparse

par = optparse.OptionParser()

par.add_option("--withargs2",
action="store",
help='Sets withargs2 to value provided, 3 by default',
default=3,
type="int")

par.add_option("-c",
"--choice",
help='Select a valid value: "First, Second, Third"',
type="choice",
choices=['First', 'Second', 'Third'])

options, args = par.parse_args()

print options.choice
print options.withargs2

66

Exercise – v.10
Add command line input to your runner class.
It should accept the input of which testcase file to run:
Suggested input format:

Usage: runner.py [options]

Options:
-h, --help show this help message and exit
-t TESTNAME, --testcase=TESTNAME Specify the name of the testcase file to run [Default: positiveflow.txt]

67

In some instances you want to interact with an FTP server for a reason or other using Python.
The module ftplib offers such support.
storbinary() and retrbinary() is used to upload/download, just open a file object in binary
read/write mode and supply.
cwd() changes the current working directory on the FTP server.

Ftplib – FTP Sessions

import ftplib

session = ftplib.FTP('127.0.0.1', ’user', ’password')
session.cwd('/tmp/')
trfile = open(filepath, 'rb')
session.storbinary('STOR uploadfile.txt’, trfile)

import ftplib

session = ftplib.FTP('127.0.0.1', ’user', ’password')
session.cwd('/tmp/')
trfile = open('downloadfile.txt', 'wb')
session.retrbinary('RETR downloadfile.txt’, trfile.write)

Create the files (downloadfile.txt and uploadfile.txt) in /tmp and try
the examples above.

68

Write a simple script that copies the two test artifacts
(see below) into ’/tmp/testartifacts/’:

Files: /opt/PFT/firstLarge, /opt/PFT/secondLarge

Then creates a zip archive with a filename formated
with a timestamp like this:

’testartifacts_20141103_153000.zip’

After that the script should connect to the FTP service
(on localhost) with credentials:

Username: tester
Password: python

And uploads the created zip archive into:

Location: /upload

Exercise - Gather Test Artifacts
import os, shutil, ftplib
from zipfile import ZipFile
from datetime import datetime

#Check if script is invoked from command line:

#Create a folder to copy the artifacts into
#Copy the files

#Create a filename with the timestamp
#And extend the path to include your folder

#Open a zipfile for writing
#Write files into it. Dont forget to close

#Open an ftp session and upload the file

69

Perhaps the most interesting method available in the time
module for a tester is sleep().
time.sleep() pauses the execution of your program for the
amount of seconds specified.

Time

import time

#Sleep for ten seconds
time.sleep(10)

import time

#Sleep for one ten milliseconds
time.sleep(0.01)

Try writing a for loop that iterates 100 times, prints
something to the screen, followed by a 100 millisecond sleep
inside the for-loop

70

Another type of control flow is the while loop.
It will do something while a condition is true.

While-loop

counter = 0
while counter <= 100:

print "Counter is: " + str(counter)
counter += 1

if counter <= 50:
print "Counter equal to or less than fifty"

elif counter > 50 and counter < 100:
print "Counter more than fifty, less than one hundred"

else:
print "Counter one hundred, exiting while loop"

Make a while loop that compares a text string as its condition.

71

while processStuff():
print "Method still has stuff to process"

Write a simple script that opens
two different files and reads from
them in a continous loop.

If a specific keyword is
encountered in the specific file
then that line should be printed
to the console.

Use different color coding for
lines found in the different files.

Also start ”generator.py” in
separate terminal.

Exercise - Data Digger

First file: /opt/PFT/DataDigger/first.log

Second file: /opt/PFT/DataDigger/second.log

#import datetime here

import time, random

class bcolors:

#Fill in the rest here

class reader:

def __init__(self, filename, color, keyword):

self.filename = filename

#Open the file here for reading

#Also store the keyword & color here

#define a method here called getLineFromFile()

#read a line in the file

#check if line is not empty & contains keyword

#print the line found with color coding

if __name__ == ’__main__’:

#create a ’reader’ object for the first file

#create a ’reader’ object for the second file

while True:

#readLine for the first file here

time.sleep(0.1)

#readLine for the second file here

time.sleep(0.1)

72

CSV Files
Tar Files

os.walkdir()

Exercise Data Generation

73

A very common data format you will come across is CSV, a file containing comma-
separated values. Python offers the csv module for you to work with such data.
You can create a CSV-reader and/or a CSV-writer depending on your needs.

CSV - Comma-separated values

import csv
csvfile = open(’file.csv’, ’rb’)
Reader = csv.reader(csvfile, delimiter=’,’)
for row in Reader:

print row
csvfile.close()

import csv
csvfile = open('file.csv', 'wb')
Writer = csv.writer(csvfile, delimiter=',')
Writer.writerow(['Adam', 'Bob', 'Cecilia', 'Donna'])
Writer.writerow(range(0,10))
Writer.writerow(['Testers'] * 5)
csvfile.close()

Save the examples above as python files and first run the writer example, look
into the generated file.
Then run the reader example.

74

In the unix world a lot of data is stored in so-called ”TAR-files”. Python offers a
convenient method of extracting files and folders stored in tar archive.
You need to open the TAR-file and work with the resulting TAR-object when
extracting or writing a new TAR archive.

TAR – Tape Archive

import tarfile

tar = tarfile.open(’myCollection.tar’)

tar.extractall()

tar.close()

import tarfile

tar = tarfile.open(’myCollection.tar’, ’w’)

for name in [’firstFile.log’, ’secondFile.log’, ’folder’]:

tar.add(name)

tar.close()

Create a temp-folder and in there
create the files and folder in the
example above.
Hint: use command touch.
Then run the write-example, verify a
TAR-file has been created.
Remove the files and folder and run
the extractAll() example.

75

import tarfile, os

tar = tarfile.open(’myCollection.tar’, ’w’)

for name in os.listdir(’.’):

tar.add(name)

tar.close()

Or…

os.walk() is a way to traverse a folder and its files
recursively.

os.walk(top, topdown=True, onerror=None, followlinks=False)

os – walk() directory

import os

for root, dirs, files in os.walk(’/opt/PFT/os_walk/’):
print ’In folder: ’ + root
print ’Contains files: ’ + str(files)
print ’And directories: ’ + str(dirs)
print "------\n"

os.walk() is a generator that yields the file names in a directory tree by
walking the tree.
Try the example above and think about the objects returned by os.walk()

76

Write a simple tool that creates a structure of 5 folders
and within those folder another set of 5 folders.

In each of the outermost folders there should be a file
called ’data.txt’ that has the format:

Firstname Lastname
State

Also the folder should contain a jpg picture with a
picture of a person.

Exercise – Data Generation

In the exercise folder you will find CSV
files containing names and states in the
US.

There is also a tar/gzip:ed archive
containing faces of different persons.

/tmp/testdata/

0/

0/

data.txt

face.jpg

1/

data.txt

face.jpg

2/

3/

4/

1/

0/

1/

2/

3/

4/

2/

3/

4/

77

import os, shutil, csv, tarfile, random

def addTestDataToFolder(folder, names, states, files):

#Retrieve a random first and last name from names, and state from states

#Write the data into data.txt in folder

#Find a random picture from files

#Copy the picture into the data folder

def getRowsFromCSVAsList(filename):

#Open CSV, in a for loop iterate over all items, add all items into list

return generated_list

If __name__ == ’__main__’:

getRowsFromCSVAsList(’names.csv’)

#The same but for states.csv

#Extract the tar archive, use os.walk() to add all file-paths into a list (files)

#Create folder (/tmp/testdata)

for firstLvlFolder in range(0,5):

#Create ”folder/firstLvlFolder” – use os.makedirs & os.path.join

for secondLvlFolder in range(0,5):

#Create second level folder

addTestDataToFolder(destFolder, names, states, files)

Outline

78

optparse

Command line input

79

Exercise HTTP + REST + Monitor System

pip
JSON

Requests
psutil

80

“psutil (python system and process utilities) is a cross-platform library for retrieving information on
running processes and system utilization (CPU, memory, disks, network) in Python.

It is useful mainly for system monitoring, profiling and limiting process resources and management of
running processes. It implements many functionalities offered by command line tools such as: ps, top,
lsof, netstat, ifconfig, who, df, kill, free, nice, ionice, iostat, iotop, uptime, pidof, tty, taskset, pmap.

It currently supports Linux, Windows, OSX, FreeBSD and Sun Solaris, both 32-bit and 64-bit
architectures, with Python versions from 2.4 to 3.4. PyPy is also known to work.”

https://github.com/giampaolo/psutil

Psutil – Monitor your system

Experiment with psutil and explore some of the following functions.

- psutil.cpu_percent(interval=1)
- psutil.cpu_count()
- psutil.virtual_memory()
- psutil.swap_memory()
- psutil.disk_partitions()
- psutil.disk_usage('/')
- psutil.disk_io_counters(perdisk=False)
- psutil.net_io_counters(pernic=True)
- psutil.net_connections()
- psutil.users()
- psutil.boot_time()

- psutil.pids()

- p = psutil.Process(<PID_Number>)
- p.name()
- p.exe()
- p.cwd()
- p.cmdline()
- p.status()
- p.username()
- p.create_time()

81

Write two scripts. The first script should in a loop continously call the REST
API:s (be nice and sleep a bit in between calls...)

- [GET] http://localhost/eatcpu

No JSON parameters necessary

- [GET] http://localhost/hogmemory

JSON Parameter: {’MemoryAmount’:[Bytes]}

The second script should monitor your system for its CPU and memory
usage over a 30 seconds period and take a sample every 2 seconds.
Store the samples and create a simple HTML report afterwards in
report.html (Hint: Just open a file and write HTML strings into it)
What info could be of interest in the report?

Run the two scripts in parallell, one to load the system, and the other to
monitor the system.

Exercise - HTTP + REST + Monitor System

82

Python and SOAP requests

83

”Simple Object Access Protocol”

sudo pip install PySimpleSoap

Python and SOAP requests?

84

from pysimplesoap.client import SoapClient

client = SoapClient(wsdl=’ http://www.webservicex.net/country.asmx?WSDL’, trace=false)

client.help(’GetCurrencyByCountry’) #Strictly not needed if you know how APIs work

client.GetCurrencyByCountry(’Sweden’)

“SOAP, originally an acronym for Simple Object Access protocol, is a protocol specification for exchanging
structured information in the implementation of web services in computer networks. It uses XML
Information Set for its message format, and relies on otherapplication layer protocols, most
notably Hypertext Transfer Protocol (HTTP) or Simple Mail Transfer Protocol (SMTP), for message
negotiation and transmission.”

http://en.wikipedia.org/wiki/SOAP

With the use of a third party library Python can handle Soap requests with ease.
There are several third party modules availble. At the writing time ’PySimpleSoap’ seems to be
the easiest and most stable.

If you ever have any Python questions after taking Python
For Testers you will always be welcome to contact
Kristoffer and he will gladly help you.

Email: kristoffer.nordstrom@northerntest.se
Twitter: @kristoffer_nord
Homepage: http://www.northerntest.se/

Thanks for your time

85

