Chris Van Bael, POLTEQ

GherkinTips & Tricks

Overview

* Introduction to Behavior Driven Development
* Feature file tips

* Background tips

* Scenario tips

* Step tips

* Tag tips

* Step definition tips

* Generic tips

Introduction to BDD

Extends Test Driven Development

TDD: not so easy

What to test, How much iIn

what not? one test?
Why does this
test fail?
What to call

the tests?

Enter Dan North

* Using agiledox, he made the mindshift from
“test” to “behavior”

* In 3 easy steps

North

Agile Exper

1: test method names should be sentences

public class CustomerLookupTest extends TestCase {
testFindsCustomerById() {

}

testFailsForDuplicateCustomers() {

}

CustomerLookup
- finds customer by id
- fails for duplicate customers

2: focus test methods with simple sentences

* Start test methods with “should”
= the class should do something!

* If you struggle with the name, perhaps the behavior may belong
somewhere else?

* “Should” challenges the premise of the test:
“should it? really?”

CustomerLookup
should find customer by id

- should fail for duplicate custoners

3: "Behavior” is more useful than “test”

* If the test methods don’t comprehensibly describe the behavior of the
system, they are lulling you into a false sense of security.

* Replace “test” with “behavior”

* What is a test?
It's a sentence describing the next behavior you are interested in.

BDD: much easier!

How much in

What to test, one test?
what not?

Why does this
test fail?

What to call
the tests?

Priorities?

* Think about the business value

* When writing code:
What's the next most important thing the system doesn’t do yet?

=>BDD provides a ubiquitous language for analysis
* eliminate ambiguity & miscommunication
» useful for analysts, developers, testers, business

Fits with user stories

my focket o move back

ana —fordh W/)en .I /‘)/eSS /eﬁZ and
r/’ﬂln‘ arrows

T can aveid asterisds

But how to define the acceptance criteria?

How to capture acceptance criteria?

&‘?

Example story of ATM

+Title: Customer withdraws cash+
customer,
to withdraw cash from an ATM,
| don’t have to wait in line at the bank.

When is this story complete?
- sufficient credit
- overdrawn
- overdrawn within credit limit

- sufficient credit, but over daily limit

Example scenarios of ATM

+Scenario 1: Account is in credit+ +Scenario 2: Account is
overdrawn past the overdraft

limit+
the accountis in credit the account is overdrawn
the card is valid the card is valid
the dispenser contains cash the customer requests cash
the customer requests cash ensure a rejection message
ensure the account is s displayed
debited ensure cash is not dispensed
ensure cash is dispensed ensure the card is returned

ensure the card is returned

On features and scenarios ...

Feature: Some terse yet descriptive text of what is desired
In order to realize a named business value

As an explicit system actor
I want to gain some beneficial outcome which furthers the goal

Scenario: Some determinable business situation
Given some precondition
And some other precondition
When some action by the actor
And some other action
And yet another action
Then some testable outcome is achieved
And something else we can check happens too

Scenario: A different situation

On examples ...

Scenario Outline: Blenders
Given I put <thing> in a blender,
when I swtich the blender on
then it should trasform into <other thing>

Examples: Amphibians

| thing | other thing
| Red Tree Frog | mush

Examples: Consumer Electronics
| thing | other thing
| iPhone | toxic waste
| Galaxy Nexus | toxic waste

On tags ...

@wip @slow

Feature: annual reporting
Some description of a slow reporting system.

* Tag selection on the command-line:
* --tags @wip, @slow

Will select all cases tagged either with “wip” or “slow”
* --tags @wip --tags @slow

Will select all cases tagged both “wip” and “slow”
* --tags ~@slow

Will select all cases except the slow ones

Gherkin is a standard (sort of ...)

* Thereis no ISO nor IEEE standard

e Butitis used in several tools:
e Cucumber (Ruby)
* Behave, Lettuce (Python)
e Jbehave (Java)
* Nbehave (NET)
* Javascript (Vows-BDD)

* The grammar exists in over 40 spoken languages: Arabic, German, French,
Dutch, ...

But also: Welsh, Pirate, LOLCAT, Scouse, ...

On automation ...

Feature: showing off behave from behave import *

Scenario: run a simple test @given('we have behave installed')
Given we have behave installed def step(context):
when we implement a test pass

then behave will test it for us!
@when('we implement a test')

% behave
Feature: showin off behave # tutorial/tutorial.feature:1l

Scenario: run a simple test # tutorial/tutorial.feature:3 s!')
Given we have behave installed # tutorial/steps/tutorial.py:3
When we implement a test # tutorial/steps/tutorial.py:7 se
Then behave will test it for us! # tutorial/steps/tutorial.py:11

1 feature passed, © failed, © skipped
1 scenario passed, © failed, © skipped
3 steps passed, © failed, © skipped, © undefined

Not limited to web applications!

* You can use all sort of *helpers’:
* Selenium Webdriver for web testing
* Aruba (Ruby), Pexpect (Python) for command line testing
* Swinger for GUI testing of JAVA/Swing applications

* Use the power of Ruby to test

XML interfaces (i.e. webservices)
* Command line and mainframe applications

Feature file tips

Avoid long descriptions

* Features should have a short and sensible title and description
* This improves readability
* 1 sentence describing scope and content

Choose single format

As a [Role] Iin order to [Benefit]

I want [feature]

I want [feature]

50 that [Benefit]

* Pick one format and stick to it
* Always include benefit: makes it easier to decide the business value

Features

...not big portions of the application!

* One feature per file
* Reflect the feature in the file name
* In larger teams preference towards smaller feature files

Domain language

* Involve the customers

* Use their domain language

* Involve them in writing the user stories

* Or at least have them review the user stories
* Keep the language consistent

Organization

* Organize your Features and Scenarios with the same discipline like
you would organize code

* For example: speed
* Fast: <1/10s
* Slow: <15
* Glacial: longer

* Put them in separate subdirectories
* Or tag them

Background tips

Use backgrounds

* It reduces repetitions in the feature file

* But keep them short (max 4 lines):
* user has to keep background in mind while reading/writing the scenarios

 And don’t include technical stuff =» feature file is about the user

* Start/stop webserver, clear tables, ... can be implemented in the step
definitions

* Don't use a background if you have only one scenario

* Don't mix backgrounds with @before hooks

Scenario tips

Scenarios and steps

* Scenario vs Scenario Outline
* 1 example: scenario
* More examples: scenario outline + table

» Keep scenarios short; hide implementation details
* Given =» When =» Then is the correct order

* Declarative steps vs imperative steps

Step tips

Step tips

* AND/OR are keywords, don’t use them within a step

iven I'm on the homepage and logged on

Should be

* Cover happy and non-happy paths

Testing is more than only proving it works

Refactor

* Your library of steps will increase in time
=>» Try to generalize your steps to increase reuse

* Your understanding of the domain will increase
=» Update your language and the steps

Tag tips

Use tags

* Tags allow you to organize your features and scenarios
* You can have multiple tags per feature or scenario
=>» Never tag the background

* Feature tags are also valid for all child scenarios
=» Don't tag scenario with same tag as feature

* Think hard on the benefit of tagging a feature
=» Using the User Story number might be useful

Possible tag categories

* Frequency of Execution: @checkin, @hourly, @daily, @nightly
* Dependencies: @local, @database, @fixtures, @proxy

* Progress: @wip, @todo, @implemented, @blocked
=>» Keep these up to date ! (if not, don’t use them)

* Level: @functional, @acceptance, @smoke, @sanity

* Environment: @integration, @test, @stage, @live

Step definition tips

Use flexible pluralization

* Add a ? after the pluralized word

Athe users? should receive an email$/ do

* ? Specifies that you are looking for zero or more of the proceeding
characters

* This way it matches both user and users

Use non-capturing groups

* Instead of (some text), use (?:some text)

* Result is not captured and not passed as an argument to your step
definition

* Useful in combination with alternation

When /A(°:I|they) create a profile$§/ do
B e

And /”once the files? (°:have|has) finished processing$/ do
¥ S

Consolidate step definitions

* You can test both positive and negative assertions

hen /”~the file is present$§/
check if file is present
end

When /Athe file is not present$/
check if file is not present

end

en /2the file is (not)? present$/ do |negate|
negate ? check if file is not present : check if file is present
end

Use unanchored regular expressions

* Normally you anchor start with A and end with $

 To increase readability and write flexible expressive steps

hen wait . seconds for the calculation to finish

hen wait © seconds while the document is converted

* Don’t misuse this or over do it!

Be DRY

* Don’t Repeat Yourself
* Refactor

* Reuse step definitions
* Within a project across features
* Perhaps even across projects

Parse date/time in a natural way

* Use a library for parsing dates and times
* Ruby: Chronic, Python: parsedatetime or pyparsing

Background:
Given a user signs up for a 30 day account

Scenario: access before expiry
When they login in 29 days

Then they will be let in

Scenario: access after expiry
When they login in 31 days
Then they will be asked to renew

Generic tips

Discipline
* Treat your code as production code
* Refactor when necessary

* Run your tests as often as possible

* Don't be too smart: somebody needs to understand it next year

Checklists

* Chris.vanbael@Polteg.com

« www.linkedin.com/in/chrisvanbael

* http://bit.ly/a0mmLFr

mailto:Chris.vanbael@Polteq.com
http://bit.ly/1OmmLFr
http://bit.ly/1OmmLFr

Questions 7

