Feature Title:

Review Date:

Reviewer(s):

Copy Reviewer(s):

Section

Item

Comments/Changes

Should comply with formatting standards

Should have an accurate business value

Should have the correct system actor

Should describe only 1 feature, this
should be reflected in the file name

Feature

Should describe the actor’s needs
consistently with the scenarios

Should have short and sensible title and
description

Should have consistent domain language

Should be organized in the correct
folders

Should comply with formatting standards

Should place the system in a known state

Background

Should be max 4 lines

Should have multiple scenarios

Should not include technical stuff

Should comply with formatting standards

Should have 1 and only 1 Given-When-
Then section (with And/Or statements)

Should use declarative steps

Should clean up the system afterwards

Should place repetitive checks in a
Scenario Outline

Scenarios

Should be able to run twice in a row
without failing

Should cover happy and non-happy paths

Should not have And/Or within the step

Should not leave data in the folder of the
running tests

Should not depend on data that is likely
to change in the course of normal usage

Should be up to date (@wip, @todo, ...)

Tags

Should not use same tag for scenario and
feature

O OO O ooog g gogf oogodoooor oo o o gogo)rs
O oo g oog g ogog ooogogooo gog o g googoge=

Should not be on the background

Copyright @2016 Chris Van Bael




Feature Title: Review Date:

Reviewer(s): Copy Reviewer(s):

Section Item Comments/Changes

Should follow coding standards

Should be consistent in style and
formatting

General Should be well-structured

code Should have clear and adequate
commenting in consistent style

Should have properly defined variables
with meaningful consistent names

Should reuse existing step definition
where possible

Should avoid fragile definitions

Steps Should use valid & robust selectors

Should throw exceptions in the proper
Exceptions | place

O oOggoog) o gl gop gogrs
a| oogoool g o gg o;=

Should provide meaningful exception text

You can use generic code review checklists:
e https://www.liberty.edu/media/1414/[6401]code review checklist.pdf
e https://courses.cs.washington.edu/courses/cse403/13sp/lectures/code-review-checklist.pdf

You can also use programming language specific checklists:
Ruby:
e https://reinteractive.net/posts/126-checklist-for-a-rails-application-code-audit

e http://matthewpaulmoore.com/post/5190436725/ruby-on-rails-code-quality-checklist

e http://www.ultrasaurus.com/2010/01/rails-security-review-checklist/

Python:
e http://pycogent.org/coding guidelines.html
CH:
e http://www.codeproject.com/Articles/593751/Code-Review-Checklist-and-Guidelines-for-
Csharp-De

e http://weblogs.asp.net/tgraham/44763

Copyright @2016 Chris Van Bael


https://www.liberty.edu/media/1414/%5b6401%5dcode_review_checklist.pdf
https://reinteractive.net/posts/126-checklist-for-a-rails-application-code-audit
http://matthewpaulmoore.com/post/5190436725/ruby-on-rails-code-quality-checklist
http://www.ultrasaurus.com/2010/01/rails-security-review-checklist/
http://pycogent.org/coding_guidelines.html
http://www.codeproject.com/Articles/593751/Code-Review-Checklist-and-Guidelines-for-Csharp-De
http://www.codeproject.com/Articles/593751/Code-Review-Checklist-and-Guidelines-for-Csharp-De

