
Copyright @2016 Chris Van Bael

Feature Review Checklist
Feature Title: Review Date:

Reviewer(s): Copy Reviewer(s):

Section Item Y N Comments/Changes

Feature

Should comply with formatting standards ☐ ☐

Should have an accurate business value ☐ ☐

Should have the correct system actor ☐ ☐

Should describe only 1 feature, this
should be reflected in the file name

☐ ☐

Should describe the actor’s needs
consistently with the scenarios

☐ ☐

Should have short and sensible title and
description

☐ ☐

Should have consistent domain language ☐ ☐

Should be organized in the correct
folders

☐ ☐

Background

Should comply with formatting standards ☐ ☐

Should place the system in a known state ☐ ☐

Should be max 4 lines ☐ ☐

Should have multiple scenarios ☐ ☐

Should not include technical stuff ☐ ☐

Scenarios

Should comply with formatting standards ☐ ☐

Should have 1 and only 1 Given-When-
Then section (with And/Or statements)

☐ ☐

Should use declarative steps ☐ ☐

Should clean up the system afterwards ☐ ☐

Should place repetitive checks in a
Scenario Outline

☐ ☐

Should be able to run twice in a row
without failing

☐ ☐

Should cover happy and non-happy paths ☐ ☐

Should not have And/Or within the step ☐ ☐

Should not leave data in the folder of the
running tests

☐ ☐

Should not depend on data that is likely
to change in the course of normal usage

☐ ☐

Tags

Should be up to date (@wip, @todo, …) ☐ ☐

Should not use same tag for scenario and
feature

☐ ☐

Should not be on the background ☐ ☐

Copyright @2016 Chris Van Bael

Step Definition Review Checklist
Feature Title: Review Date:

Reviewer(s): Copy Reviewer(s):

Section Item Y N Comments/Changes

General
code

Should follow coding standards ☐ ☐

Should be consistent in style and
formatting

☐ ☐

Should be well-structured ☐ ☐

Should have clear and adequate
commenting in consistent style

☐ ☐

Should have properly defined variables
with meaningful consistent names

☐ ☐

Steps

Should reuse existing step definition
where possible

☐ ☐

Should avoid fragile definitions ☐ ☐

Should use valid & robust selectors ☐ ☐

 ☐ ☐

 ☐ ☐

 ☐ ☐

Exceptions

Should throw exceptions in the proper
place

☐ ☐

Should provide meaningful exception text ☐ ☐

You can use generic code review checklists:

 https://www.liberty.edu/media/1414/[6401]code_review_checklist.pdf

 https://courses.cs.washington.edu/courses/cse403/13sp/lectures/code-review-checklist.pdf

You can also use programming language specific checklists:

Ruby:

 https://reinteractive.net/posts/126-checklist-for-a-rails-application-code-audit

 http://matthewpaulmoore.com/post/5190436725/ruby-on-rails-code-quality-checklist

 http://www.ultrasaurus.com/2010/01/rails-security-review-checklist/

Python:

 http://pycogent.org/coding_guidelines.html

C#:

 http://www.codeproject.com/Articles/593751/Code-Review-Checklist-and-Guidelines-for-

Csharp-De

 http://weblogs.asp.net/tgraham/44763

https://www.liberty.edu/media/1414/%5b6401%5dcode_review_checklist.pdf
https://reinteractive.net/posts/126-checklist-for-a-rails-application-code-audit
http://matthewpaulmoore.com/post/5190436725/ruby-on-rails-code-quality-checklist
http://www.ultrasaurus.com/2010/01/rails-security-review-checklist/
http://pycogent.org/coding_guidelines.html
http://www.codeproject.com/Articles/593751/Code-Review-Checklist-and-Guidelines-for-Csharp-De
http://www.codeproject.com/Articles/593751/Code-Review-Checklist-and-Guidelines-for-Csharp-De

