
Experiences of (Embedded)

Test Automation

Bryan Bakker

TestNet thema avond 2014

bryan.bakker@sioux.eu

 @Bryan_Bakker

mailto:bryan.bakker@sioux.eu

Contents

 Sioux

 Different in embedded testing

 Test automation aspects

 Case studies

 Summary

© Sioux 2014 | Confidential | 2

About Bryan Bakker

 Test Expert

 Certifications: ISTQB, TMap, Prince2

 Member of ISTQB Expert Level on Test Automation

 Tutor of several test related courses

 Domains: medical systems, professional security

systems, semi-industry, electron microscopy

 Specialties: test automation, integration testing, design

for testability, reliability testing

© Sioux 2014 | Confidential | 3

About Sioux

HERENTALS
NEDERWEERT

EINDHOVEN

UTRECHT MOSCOW

© Sioux 2014 | Confidential | 4

GENT

VIETNAM

http://www.punchinternational.com/web/index.asp?customer=1&ut=L
http://www.icos.be/index.htm
http://en.wikipedia.org/wiki/Image:Photo_lb.jpg

© Sioux 2012 | Confidential | 5

Examples of software failures

Do not underestimate the impact of (defects in) software

Yesterday

© Sioux 2012 | Confidential | 6

 Not only software is developed, but also:

 Mechanics

 Electronics

 Optics

…. at the same time …

 Hardware behaves differently:

 Wear

 SW defect always in design <-> HW defect can be in

manufacturing process

 HW variations/imperfections (per batch, over time)

 also caused by End of life and cost reductions

© Sioux 2014 | Confidential | 7

Differences

 System test covers all disciplines

 Software testing is different from HW testing

 Integration is the most difficult part

 Defects often timing related

 Hard to reproduce/analyze/fix/retest

 Safety

 Updates can be problematic

 Automotive

 Medical / Aircraft

 Spacecraft

 Mass products

© Sioux 2014 | Confidential | 8

Differences

 Access to SUT needed to:

 Let SUT perform actions (test steps)

 Retrieve information from SUT (test verification)

 “Default” approach:

 Via User Interface

 With standard tooling (record & playback)

 How to do when

 No UI available for standard tooling?

 UI automation is not desired?

(e.g. maintainability)

© Sioux 2014 | Confidential | 9

Access to system

 There is no best way to interface with a SUT

 Depends on e.g.

 Product

 Technology

 Project

 (Test) Maturity of organization

 Context

 Three examples… different approaches to test

automation

© Sioux 2014 | Confidential | 10

Access to system

© Sioux 2014 | Confidential | 11

Case study 1

Security & observation system

 Existing Command Line Interface (via RS-232 and

TCP/IP)

 For customers to build “own” applications

 Also used for test automation

 Standard functionality used

 Dedicated test interfaces added

 “Pressing physical buttons” as low as possible in

the software architecture

 Simulating external events: motion, alarms, video-loss

 Simulation exceptional behavior: disk full, disk failure

 Retrieving internal states, and variable information

© Sioux 2014 | Confidential | 12

Case study 1

Approach

© Sioux 2014 | Confidential | 13

Case study 1

Approach

Test case

Standard

interfaces
Test interfaces

Library

System Under Test

 Used for

 Extensive regression testing

 Performance testing

 Reliability testing

 Results

 Identified numerous defects

 Frequent false alarms

 Unreliable test case results (9x passed, 1x failed…?!?)

 Defects in dedicated test interfaces

 Defects which are not possible in the field

 How to convince product owner to fix these issues…?

 High probe effect!

© Sioux 2014 | Confidential | 14

Case study 1

Approach

15

Case study 2

X-Ray medical device

Medical Surgery Device:

 X-ray exposure + acquisition during surgery activities

 Real-time image chain

 Mobile device (frequently off/on)

 Quality and testing considered

important in organization

Reliability was an issue:

 “Frequent” startup failures

 Aborted acquisitions

 Always safe… but not reliable!
© Sioux 2014 | Confidential |

 Hardware interfaces used to invoke actions on SUT

 Buttons on different keyboards

 Handswitches

 Footswitches

 Different power-switches

 LabVIEW generates electrical signals

 Logfiles used for verification

 No software changes needed for this approach

 Later also extended with software test interfaces

Case study 2

Approach

16 © Sioux 2014 | Confidential |

Case study 2

Approach

17

System Under Test

Hardware Abstraction Layer
(LabVIEW)

Input (hardware &
software)

Test Execution Environment
incl. test cases and library

(Ruby)

Control

R
e

p
o

s
it
o

ry

(T
e

s
t

c
a

s
e

s
 +

 R
e

s
u

lt
s
)

Test Framework

Output

Result

Test Scheduler
(Ruby)

© Sioux 2014 | Confidential |

18

Case study 2

Results

 Numerous reliability hits identified + solved

 Low probe effect (not a single false alarm)

 Easily ported to different products

 More projects wanted this approach

 Only 5 system test cycles remaining (was 15)

 LabVIEW layer (+dedicated hardware)

developed by HW-Engineer

 LabVIEW complexity not part of test scripts

18

© Sioux 2014 | Confidential |

Case study 3

Electron microscope

 World leader in electron

microscopes

 Light microscope: 1000x

200nm (limited by the

wavelength of light)

 Electron microscope: 4Mx

0.05 nm

 Nm = a billionth of a meter (10-9

meter)

© Sioux 2014 | Confidential | 19

Case study 3

Electron microscope

© Sioux 2014 | Confidential | 20 2 nm2 nm 0. 5 nm0. 5 nm

Atomic structur of Ge

(Germanium). Distance

is 0.5 nm

Breast cancer cell.

Magnification 5.000x Salmonella bacteria.

Magnification 80.000x

Case study 3

Approach

 First steps: quick and dirty

 Fast feedback

 Automation via

GUI

© Sioux 2014 | Confidential | 21

Case study 3

Approach

© Sioux 2014 | Confidential | 22

 Vacuum SW redesign

 New HW

items

 Test automation focus

on vacuum

 UI-Controls and graphics used for

 Test actions

 Test verifications

 Reliability tests

 System tests on complete system

 Executed for long time (days)

 Not only software but whole system is tested

 “Machine fathers” were afraid of

 Machine damage

 Lost vacuum

Case study 3

Approach

© Sioux 2014 | Confidential | 23

Case study 3

Results

 Low probe effect, although high probe effect was

expected

 Almost no SW failures found

 HW failures identified within a few days

 Excessive wear

 Bad batches

 Design flaws

 Note: Vacuum SW was modelled + generated

 Later also extended with dedicated test interfaces

 phase out the UI automation

 © Sioux 2014 | Confidential | 24

 The level to which the SUT is

adapted in order to make it

possible to automate testing

 Probe effect:

 “unintended alteration in

system behavior caused by

measuring that system”

(wikipedia)

© Sioux 2014 | Confidential | 25

Level of Intrusion

© Sioux 2014 | Confidential | 26

Level of Intrusion

© Sioux 2014 | Confidential | 27

Level of Intrusion

© Sioux 2014 | Confidential | 28

Level of Intrusion

© Sioux 2014 | Confidential | 29

Level of Intrusion

Conclusion

 Some differences

 Access to the SUT

 Test automation approach

 context very important

 3 examples with different approaches

 All 3 approaches fitted in the current

situation

 Approach changed over time

© Sioux 2012 | Confidential | 30

Questions

© Sioux 2014 | Confidential | 31

32 © Sioux 2014 | Confidential |

www.sioux.eu

bryan.bakker@sioux.eu

+31 (0)40 26 77 100

