
SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 1

�SLCM: A Software Lifecycle Model to support SPI and Software Metrics�

NOTE: this paper has been submitted for publication and is under review. As such, the concept status
applies. When making references to this article, please use the current title, name of author and date.

Organisations willing to use this model are kindly requested to contact the author.

Hans Sassenburg 1

Abstract
In the software industry, software process improvement (SPI) and software metrics have received
considerable attention over the last decade. Several process models and standards have become
available to support process thinking, process improvements and quantitative decision-making. Some
parts of the software industry have been successful in adopting these models and standards to improve
their software capabilities. Processes have been defined and institutionalised; process and product
measurements are used to support proactive decision-making when controlling software projects.
However, most software organisations are still relatively immature and struggle to successfully
implement sustainable improvements. SPI initiatives are started, halted, restarted and eventually
stopped. Metrics programmes are often started in isolation from SPI initiatives and are tolerated as long
as they do not cost too much and do not hamper the normal operation. Failing to mature the software
industry is becoming increasingly dangerous as software is playing a growingly important role in
today�s society. Failing to make sustainable improvements is often considered to be the result of
insufficient management awareness and commitment. This might be true, as managers in general tend
to ask questions like: what is the return on investment of this improvement or does it make my current
projects better and faster? It is very difficult or even impossible to answer this question when there is
no solid process foundation. It simply means that measuring any improvements is impossible, because
it is totally unclear what to measure, how to measure and when to measure. In this article a software
lifecycle model is proposed, laying the foundation for future SPI and metrics initiatives. It is argued
that each professional software organisation must have such a foundation a place before questioning
the return on investment of improvement initiatives. As such, it helps relatively immature organisations
to focus on the implementation of necessary measurements during the entire product lifecycle. By
doing so, it is inevitable that certain processes must be defined and implemented. This is a non-process
and non-standard driven approach that might help organisations to implement SPI and metrics
initiatives in an indirect way from a different perspective. Further, the focus is not restricted to product
development only but includes product maintenance as well. This might help those organisations, that
are looking for ways to bridge the gap between development and maintenance activities. The ultimate
goal is not to reach a maturity level of a process model or meeting the requirements of a process
standard, but to lay the necessary foundation for controlling product development and maintenance by
using quantitative information. Organisations having this foundation in place will have the ability to
discuss possible improvements based on quantitative information. The proposed software lifecycle
model SLCM will offer the possibilities to derive those improvement initiatives that have potentially
the highest return on investment.

Keywords: Life-cycle management, software process improvement, software metrics, Personal
Software Process, size estimation, time estimation, effort estimation, defect detection, defect removal,
yield, appraisal/failure ratio, productivity, reliability.

1. Introduction

The large application of information technology has an enormous impact on society and as a result the
software industry has become critical. The fact is that the development of software products is often
performed in an �ad hoc� way. The Capability Maturity Model® or CMM® as developed by the
Software Engineering Institute (SEI) defines five different maturity levels for the development process
of a software supplier [SEI 1995]. The SEI publishes twice a year a Maturity Profile Update. These

1 Hans Sassenburg is Managing Director of SE-CURE AG, P.O.Box 340, 3775 Lenk, Switzerland. He is also conducting a
PhD research at the University of Groningen (The Netherlands), investigating how the release decision-making process of
software products can be improved. E-mail: hsassenburg@se-cure.ch.
® Capability Maturity Model and CMM are registered in the U.S. Patent and Trademark Office.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 2

profiles list the percentage of officially assessed software suppliers performing at each level. 2 At the
end of 2002 the percentage of assessed suppliers still performing at the lowest maturity level equalled
24.8% [SEI 2002].3 This simply means that these software suppliers have the most important processes
with regard to project management not in place. It is commonly assumed, that the assessment of all
software suppliers worldwide would show a far more dramatic picture. Estimations are that 85% to
95% of all software suppliers do not meet the criteria of CMM level 2.

The CMM and its successor CMMIsm have been widely accepted as a process model to steer software
process improvement (SPI) activities. In some parts of software industry, like the defense industry,
software suppliers are obliged to have their software processes at least at CMM level 2 or 3 in order to
get any contracts. In many organisations, software has become such a critical part in the product-
portfolio, that senior management at the strategic level has defined objectives and allocated budgets for
improvements. Despite these successes to realise sustainable improvements, the percentage of failures
is however probably some magnitudes higher. Despite large investments in process improvements,
many software organisations still reside firmly at CMM level 1. As a consequence, any initiative is
likely to fail as the attitude of people involved may best be described with the acronym BOHICA. 4
Many studies have revealed critical success factors to successfully implement these SPI initiatives,
where management awareness and commitment are considered to be crucial ones [ZAH 1998].
However, two important factors might be missing in these studies. In the first place, it is often not the
lack of management awareness and commitment but the lack of knowing how to select reasonable
improvements with confidence that the money invested will be paid in a given timeframe. Managers
are faced with a difficult job here. There is still little evidence that conformance to process models and
standards guarantees good products, which meet customers� demands [KIT 1996]. Secondly, projects
in CMM level 1 organisations are often characterised by budget and time pressure, especially when
they are progressing to the set release date. This hampers improvement initiatives, as the focus is
inevitably on getting the work done instead of having philosophical discussions about management
policies and new working methods. This might even happen again in CMM level 2 or higher
organisations, when the focus is on cutting down budgets and meeting the promised release date.

Another approach to make a breakthrough in these situations might be to address SPI initiatives from a
different point of view, leaving out or changing the name in order to avoid resistance. In this article
such a different approach is proposed. The approach focuses on the lifecycle modelling of software
products, where both the development and maintenance phase are taken into account. This lifecycle
approach incorporates many metrics that are defined by Humphrey in his Personal Software Processsm
or PSPsm. First, an overview of these metrics will be given, including a discussion of tradeoffs between
different metrics with regard to their optimal values. This is covered in sections 2 and 3. Hereafter, a
lifecycle approach to software product development and maintenance is discussed in section 4,
followed by revealing the results of empirical research in seven different European organisations in
section 5. The proposed lifecycle model and an explanation of the underlying metrics are presented in
section 6 and 7 respectively. Some remarks about how to use the model will be discussed in section 8.
Finally, in section 9 the main conclusions are drawn with a presentation of future research steps.

2. Overview of the Personal Software Process

Humprehy introduced the PSP in 1995 [HUM 1995] and published a summarised version in 1997
[HUM 1997]. The development of the PSP was a result of the success of the Capability Maturity
Model or CMM [SEI 1995]. By starting the improvement of processes at the level of projects and
organisations using the CMM, room was created to address the process capabilities of individual
software engineers as well. The PSP is taught in an intensive course of two weeks, where software
engineers are confronted with their personal way of developing software. After having baselined their
current performance, they are taught in small steps how insight can be gained in their personal software
process. Further, by changing their processes they are taught how to improve the predictability (better

2 �Officially� means here that the assessors have followed special courses organised by the SEI and that assessment
results have been passed forward to the SEI.
3 Currently, a transition takes place from the CMM to the CMMI (�I� stands for �Integration�). The SEI has announced in
early 2002 that support for the CMM will be stopped from 2004 on.
4 �BOHICA� stands for �Bend Over, Here It Comes Again�.
sm CMMI, CMM Integration, Personal Software Process and PSP are service marks of Carnegie Mellon University.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 3

estimates), the effectiveness (higher quality) and the efficiency (higher productivity) of their work. The
ultimate goal is to produce high-quality software.

In Figure 1, the process flow of the PSP is shown. It is based on [HUM 1997, p. 125] with only minor
changes. This process flow was developed for the Eindhoven University of Technology (The
Netherlands), where PSP was successfully introduced as a separate course in the post-masters
education programme OOTI (1998).

The Process Script defines which activities have to be performed in each development phase. In the
first phase Analysis the Requirements are studied, where after estimates are made for size of the
resulting program, the productivity, the effort distribution over the subsequent phases, and other
product and process metrics. These estimates are recorded on the Project Plan Summary. During the
subsequent phases, the actual defect and time data are logged on the Defect Log Form and the Time
Log Form. The Design Review Checklist and the Code Review Checklist are used to structure the
review process during the Design Review phase and the Code Review phase. When the program has
been tested and is ready to be released as a Finished Product, all recorded data is summarised on the
Project Plan Summary, enabling the software engineer to make an analysis in the Post Mortem phase
prior to the program release. The purpose of this analysis is to investigate how the process used can be
further improved. The result may be that the Process Script, the Design Review Checklist and/or the
Code Review Checklist are adjusted. Further, the data from the Project Plan Summary can be used to
calculate accumulated values for productivity, time or effort distribution, and so on. This information
can be stored in a Repository to support the estimation process for future programming assignments.

<Figure 1 to be inserted here>

By following the PSP process, valuable product and process data are obtained. Analysis of the data
enables a software engineer to calculate for instance the following metrics:

! Estimation Accuracy. Estimates are collected for the size of the program to be developed and the

process to be followed (time distribution, productivity, etcetera). These estimates are compared
with the actual figures when the program has been implemented and tested. The result is the
estimation inaccuracy, which can be calculated with the following equation:

Estimation Inaccuracy =
Actual Value - Estimated Value

Estimated Value
x 100%

 (1)

! Relating Size and Effort: Productivity. By measuring the size and effort of programs, the
productivity can be calculated in retrospect. When the productivity has been measured however, it
can be used to proactively calculate the expected effort or time needed to develop a program when
the size of the program has been estimated, the equation being:

Calculated Effort =
Estimated Size

Measured Productivity (2)

! Yield. When developing a program subsequent development phases are passed through. In each
development phase defects will be injected and removed. Removed defects might have been
injected in the current development phase, however they might also have been injected in previous
development phases. The yield of a development phase can be defined as a number, expressing the
number of defects removed in a particular phase divided by the sum of the number of defects
inherited from previous phases and the defects injected in the phase itself 5:

Yield (X) =
 # defects removed in phase X

(# defects inherited from previous phases) + (# defects injected in phase X)
x 100%

 (3)

The yield of a phase can vary from 0% to 100% (if the denominator equals 0, the yield of the
phase is equal to 100%). When the yield of a phase equals 0%, it means that in that particular

5 �#� stands for �number of�.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 4

phase no defects have been removed. They are all carried forward to the next phase. When the
yield of a phase equals 100%, it means that in that particular phase all existing defects are
removed. These are both the defects inherited from previous phases and the defects injected in that
particular phase itself. In the ideal case, the yield of each development phase is equal to 100%.
This means that in each phase all injected defects are also removed and that the final product is
free of defects. But in practice, not all defects will always be removed. Defects will be carried
forward to the subsequent phases. If they are not found in, they will be shipped being part of the
final product. Note that the yield of the different development phases can only be calculated when
all defects have been found. Only then it is known how many defects where injected and removed
in the different phases.
If an injected defect is carried forward to subsequent phases, it is very important to detect and
remove the defect as early as possible. The rework effort is proportional to the difference between
the injection phase and the detection and removal phase. If an early injected defect is found in one
the latest phases of development, the rework effort will extend over more phases. Very expensive
defects are the ones that are injected during the Analysis and Design phase and detected during the
Test phase. 6 Another approach is now to calculate the Yield of the phases Analysis and Design
combined:

YieldAD =
defects removed in phases Analysis and Design
defects injected in phases Analysis and Design

x 100%
 (4)

This metric denotes the quality of the early phases before handing over the blueprint of the product
for further implementation and testing.

! Appraisal/Failure Ratio (A/FR). Striving for a high combined Yield means investing effort in

appraisal to detect defects as early as possible. An example of an appraisal action is for instance a
review. The objective of appraisal actions is to pass forward a reliable product to the next phase.
Advantages are twofold. In the first place this will probably lead to a more reliable final product. It
is a utopia to think that all transported defects will be found at a later stage. In the second place the
total failure cost in subsequent phases due to fixing detected defects will probably decrease as the
number of expensive defects decreases. A new metric is introduced, called the Appraisal/Failure
Ratio or A/FR. This is the ratio between the appraisal cost in the early development phases and the
failure cost in subsequent development phases, its equation:

Appraisal/Failure Ratio =

appraisal effort in phases Analysis and Design
failure effort in subsequent phases (5)

The A/FR can vary from 0 to infinite (if the denominator equals 0, the A/FR is equal to 0 if defects
are found but not removed and the A/FR is undefined if no defects are found). An A/FR equal to 0
means that no appraisal effort is spent in detecting and removing defects in the early phases of
development. The failure cost to be made in subsequent phases later will presumably be very high,
assuming that the reliability of the final product is important.

! Defect Injection and Defect Removal Rate. Collecting defect data enables one to calculate the

defect injection and defect removal rate in each development phase. It can for instance be related
to the effort spent in that particular phase:

Injection Rate (X) =
defects injected in phase X

effort in phase X (6)

Removal Rate (X) =
defects removed in phase X

effort in phase X (7)

! Defect Density. The defect density can be calculated by relating the total number of defects found

during development to the resulting program size:

6 It is assumed here, that there are no defects in the requirements.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 5

Defect Density =

defects found
program size in KLOC

 (8)

A defect density equal to 0 means that no defects are introduced during development; in other
words the Yield of each development phase equals 100%.

These metrics are powerful to analyse the software process and adjust the process in order to
implement improvements. Most metrics are self-explaining with regard to their best values. The best
values for Estimation Inaccuracy and Defect Density are for instance 0%, for Yield the best value
would be 100%. This is however not evident for a metric like A/FR. But there is more. The best value
does not necessarily mean that it is the optimal value. There might be practical limitations to obtain a
Yield of 100% for instance. Human work is not perfect, causing the injection of defects, and a project
budget is normally limited, meaning that time for appraisal and failure expenditures is limited. It is
worth considing the question whether there are optimal combinations of a set of metrics.

3. Yield and A/FR: optimal values?

It was stated earlier that it is very important to detect and remove defects as early as possible. Late
defect removal is more expensive. In Figure 2 it is depicted what the cost are to fix a requirements
defect in later phases at project level [BOE 1981].

<Figure 2 to be inserted here>

How does the A/FR help to reduce the number of expensive defects? Increasing the value for the A/FR
will have the following effect. By introducing appraisals such as reviews in the earlier development
phases, the failure cost in subsequent phases will potentially decrease. In that case the reviews have a
positive return on investment, because the decrease in failure cost will be more than the invested
appraisal cost. This will be the case when there are many defects in a program. With little effort the
Removal Rate can be substantially increased and the overall Productivity will be improved. There is
however an optimum. Beyond this point, the law of diminishing returns applies. A further increase in
appraisal cost will have less effect on the reduction of failure cost and the overall Productivity will
decrease again. The Point of Optimality is the minimal value of the sum of the appraisal cost and
failure cost:

Point of Optimality = Min (Sum (appraisal cost, failure cost))
 (9)

This has been depicted in Figure 3. By further improving the A/FR beyond this point, it is theoretically
possible to reach a Yield of 100%.

<Figure 3 to be inserted here>

What is the optimal value for the A/FR? This is a question that needs to be addressed at project level in
its specific business context. The answer is influenced by factors like the type of application and the
market situation. It might be the case for instance, that an application demands an extreme high level of
reliability. Such requirements can only be met by an extremely high Yield, as detecting defects in later
development phases becomes increasingly difficult. An example is the aerospace industry. A wrongly
launched rocket being destroyed will cost a fortune. In this case a high value for the A/FR is justified,
although it will imply a decrease in productivity. Another example is the selling of high-volume
products, requiring a high level of reliability. It is nearly impossible for a supplier to call back millions
of televisions or a hundreds of thousands of cars (failure cost). On the other hand, there might also be
situations where a software product supplier consciously takes a low A/FR for granted. A supplier
wants for instance to introduce a new product and decides to prevail time to market above functionality
and reliability. The initial appraisal and failure cost are brought down to strictly necessary values. After
having gained the Early-Adopters advantage in a new market, the necessary failure cost is made
afterwards although presumably some multiples higher.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 6

So it can be concluded that the optimal value for the A/FR is influenced by the required reliability of
the final product. If a product is delivered with a higher reliability than strictly needed by the
customer(s), then either the appraisal cost has been too high (A/FR too high) or the failure cost has
been too high (A/FR too low). Normally however, products in the software industry tend to have too
many defects, leading to unwanted failures. In these cases, it is always worth striving for a higher Yield
by increasing the A/FR because the Point of Optimality has not yet been reached. The overall reliability
and productivity will increase: better quality for less money in less time.

4. Lifecycle Approach

The PSP metrics are owned and used by individual software engineers. They are private to them and
are not meant to be used by (project) management. If software engineers were asked or even forced to
hand over their data to management, they would probably change their data in such a way that their
management would be pleased by it: very accurate estimations, a high productivity and excellent
figures for Yield and A/FR. Management must not ignore this and be aware of the principle �you get
what you ask for�. Further, the accumulation of PSP data is not the data they should be interested to
look into. The PSP data from engineers cover only a small part of the software lifecycle, namely the
implementation phase when software modules have been defined on a higher abstraction level such as
the software architecture. Managers should be interested in the total software lifecycle, expanding from
the initial idea of a software product till its end-of-life. This covers both the initial development of the
product and the operational phase, in which subsequent versions of the software product are developed
and released. Research shows that up to 70% of the total lifecycle cost consists of maintenance cost
after having released the first product version [McK 1984]. Activities in the maintenance or operational
phase to be distinguished are [IEE 1998]:
! Corrective maintenance: reactive modification of a software product performed after delivery to

correct discovered faults (17% of total maintenance cost [NOS 1990]).
! Adaptive maintenance: modification of a software product performed after delivery to keep the

computer program usable in a changed or changing environment (18% of total maintenance cost
[NOS 1990]).

! Perfective maintenance: modification of a software product performed after delivery to improve
performance or maintainability. The improvement of performance could be described as evolutive
maintenance and the improvement of maintainability as preventive maintenance (65% of total
maintenance cost [NOS 1990]).

Many software suppliers have a short-term horizon disregarding the total life-cycle effects [BER 2001].
In these cases, the focus is on controlling the cost and schedule of the current product release. This
potentially leads to sub optimisation instead of a strategic long-term approach and as a consequence the
premature releasing of software products and rapidly increasing maintenance cost. It might even lead to
the situation where the software is no longer maintainable and must be replaced by a new generation.

5. Research Results

In 2003, empirical research has been conducted in seven European software organisations, working at
different CMM levels (1, 2 and 3). One of the objectives of this research was to investigate to what
extent these software organisations can predict the expected maintenance cost before releasing their
software products. The main conclusions were [SAS 2003]:
! The final release decision was made without being able to accurately estimate operational cost.

In all cases, reliability and maintainability were defined as important non-functional requirements
as they determine to a great extent the operational maintenance cost after product release. High
reliability reduces corrective maintenance effort and high maintainability reduces both corrective
maintenance effort and adaptive/perfective maintenance effort. In all cases, these non-functional
requirements were not deployed to lower level components as identified in the selected product
design or software architecture. It was only during testing that much effort was spent on meeting a
high level of reliability. However, in all cases the organisations were unable to make solid
statements about the reliability and maintainability in quantitative or even financial terms.

! There was no strong feedback loop in the product development cycle. After product release, there
were no specific actions undertaken to evaluate the result of the decision. In only one case there
was a plan to evaluate the business case used as the rationale for the project at predefined moments

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 7

after product release by the business project leader, who was assigned the responsibility for the
investments made. Further, in all cases there was no system in place to analyse the reported
failures found after product release and use the results to remove process deficiencies in product
development.

As a consequence, the following risks surface:
! Unpredictable product behaviour. It is very difficult if not impossible to guarantee the end-user(s)

what the exactly implemented functional and non-functional requirements of the software product
will be. This may for example lead to a dissatisfied customer and to unforeseen, even potentially
dangerous situations. Apart from the fact that people�s lives may be at risk, such situations can
have an enormous financial impact on the supplier as the operational maintenance cost is also
unknown. The post-release or maintenance cost of the software products may be unexpectedly
high. The exact status of the software product with its documentation is not known, which may
cause high corrective maintenance cost when repairing failures. Further, adaptive and perfective
maintenance activities may be severely hampered.

! Weak foundation for selecting improvements. Not analysing the reported failures after product
release possibly prevents an organisation from selecting the best improvements in the development
process. It may for instance be the case, that the measured productivity during development should
be compensated for a very high level of corrective maintenance cost due to many reported failures.
In that case, an improvement of the reliability by increasing inspections might be a far better
improvement than for instance documenting policies as a prerequisite to reach the next CMM
level.

This sub optimisation is often a result of separating the responsibilities of product development and
product maintenance. A (project) manager responsible for product development only, will for instance
be less willing to invest in measures to improve the maintainability of a product. It means spending
additional budget and time, where the assigned responsibility is often to limit both budget and lead-
time in order to release the product as early as possible against minimal cost.

In the next section, it will be investigated how the definition of PSP metrics can be promoted to the
level of a project and what extensions must be made to cover the entire lifecycle of a software product
instead of focusing on the development phase only. By doing so, a measurement foundation is built that
offers management a powerful instrument to support quantitative decision-making throughout the
lifecycle of a software product.

6. Proposed Lifecycle Model SLCM

The PSP metrics can be easily promoted to the level of a project. By adding some additional metrics, a
lifecycle model is obtained which enables management to evaluate projects with regard to
predictability (estimation), effectiveness (quality) and efficiency (productivity). Analysis of the data
and discussing the results has two main advantages. In the first place, the possibility is offered to
remove process deficiencies, which are nothing less than process improvements. Secondly, calculations
can be made of the expected return on investment. These issues will be discussed in section 8. In this
section and section 7, the lifecycle model and derived metrics will be discussed first.

In Figure 4 the proposed lifecycle model SLCM (Software LifeCycle Model) is presented together with
the derived metrics. In this section, the data to be supplied in the model will be discussed. The derived
metrics are the subject of section 7.

<Figure 4 to be inserted here>

The data to be supplied to the model is the following:
! Size. Both the estimated size of the product to be developed and the actual size of the developed

product are inputs to the model. The estimated size will be obtained at the beginning of the project;
the actual size when the product is ready to be released. Size can for instance be expressed in Kilo
Lines Of Code (KLOC), Function Points (FP), or other units.

! Effort. Regarding effort, distinction is made between different phases and different categories. The
phases can be tailored to the ones used in a specific organisation. The same holds for the
categories, however it is important to make an explicit distinction between the effort spent on

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 8

appraisal activities (like inspections and reviews), failure activities (rework for detected defects),
and other effort (in this case management and technical work). For each category in each phase,
the estimated effort to be spent and actual spent effort are inputs.

! Time. Distinction is made between the estimated lead-time and actual elapsed lead-time in days
per phase. The fact that phases may overlap each other is not taken into account here.

! Defects. Finally, the detected and repaired defects are input to the model. For each phase, the
detected and repaired defects must be counted and it must be determined in which phase each
defect was injected.

This data highly corresponds with the data an individual software engineer collects when applying the
PSP. The main differences are that now the maintenance phase is also taken into account and that the
total effort spent in each phase is distributed over different categories.

7. Derived Metrics

Being able to collect the data as input to the lifecycle model SLCM offers a project the possibility to
derive powerful metrics that support decision-making in future projects and to select improvements
with a possibly high return on investment. These metrics are presented in the lower part of Figure 4 and
are now shortly described:

! Estimation Accuracy. The estimates with regard to size, effort and time can be compared with the

actual figures when the product is ready to be released and during further maintenance activities.
The result is the estimation inaccuracy, which can be computed with equation (1). In Figures 5a
and 5b, the effort and time estimations are graphically compared with the effort and time actuals
respectively. It also reveals how effort and time are distributed over the different phases.

! Effort Distribution per phase. Another important metric is the distribution of the different effort

categories over the various phases. See Figure 5c. This gives insight in important issues like for
instance the appraisal and failure cost in each phase.

! Yield. Regarding the Yield, distinction is made between the Yield of phase X and the cumulative

Yield of phase X and all its previous phases. See Figure 5d. The following equations are used:

Yield (X) =
 # defects removed in phase X

(# defects from phase X-1) + (# defects injected in phase X) (10)

Yield (X) cumulative =
defects removed so far
defects injected so far (11)

! Appraisal/Failure Ratio. The A/FR is also calculated for each phase X separately as well as for

the combination of phase X and all its previous phases (appraisal cost) compared to all its
subsequent phase (failure cost). See Figure 5e. The following equations are used:

Appraisal/Failure Ratio (X) =
appraisal effort in phase X
failure effort in phase X (12)

Appraisal/Failure Ratio (X) cumulative =
cumulative appraisal effort so far

cumulative failure effort in subsequent phases (13)

! Defect Detection Rate and Defect Removal Rate. The Defect Detection Rate and Defect Removal
Rate are metrics indicating how much effort is needed to detect a defect and how much effort is
needed to remove a defect. They are directly related to the appraisal cost and failure cost
respectively. See also Figures 5f and 5g. The equations are:

Defect Detection Rate (X) =
defects detected in phase X
appraisal effort in phase X (14)

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 9

Defect Removal Rate (X) =
defects removed in phase X

failure effort in phase X (15)

! Productivity. Distinction is made between the productivity during development and the
productivity taking into account the maintenance phase as well. Equations:

Productivity development =
actual product size
development effort (16)

Productivity overall =
actual product size

development effort + corrective maintenance effort (17)

! Measured Reliability. The reliability is measured continuously during the maintenance phase and

recalculated when a new failure has been reported and accepted. Equation:

Reliability measured =
reported failures

productsize in KLOC (18)

! Technical Metrics. Finally, two technical metrics are calculated and can be of help with respect to

the maintenance phase, especially when subsequent versions of the product are being developed.
They cannot be calculated from the supplied input data in the model, but must be calculated
separately. The first one is the Maintainability Index or MI [OMA 1994] and gives an indication
how maintainable a software product is. 7 There are two equations available, the second one taken
into account the availability of comment in the code (assuming that it has a positive influence on
maintainability):

MI = 171 - 3.42 ln(aveV) - 0.23 aveV (g') - 16.2 ln (aveLOC)
 (19)

MI = 171 - 3.42 ln(aveV) - 0.23 aveV (g') - 16.2 ln (aveLOC) + 50 sin 2.46 perCM
 (20)

with:

aveV = average Halstead Volume per module
aveV(g1) = average extended cyclomatic complexity per module
aveLOC = average lines of code per module
perCM = average percent of lines of comment per module

The second technical metric is the Software Maturity Index or SMI [IEE 1988a, IEE 1988b].

SMI = [Mt - (Fa + Fc + Fd)] / Mt (21)

with:

Mt = number of modules in the current release
Fc = number of modules in the current release that have been changed
Fa = number of modules in the current release that have been added
Fd = number of modules in the current release that have been deleted

SMI provides an indication of the stability of a software product and can be used as a metric for
planning software maintenance activities. As SMI approaches 1, the product begins to stabilise.

<Figure 5 to be inserted here>

7 MI < 65: poor maintainability, 65 <= MI < 85: fair maintainability, MI >= 85: excellent maintainability [COL 1993].

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 10

8. Using SLCM

This set of derived metrics offers the possibility to analyse projects and their products into detail. Take
a look for instance at the example as presented in Figure 4 and Figure 5. The following can be
concluded:
! Predictability. There is a considerable budget overrun (+50%) and schedule overrun (+19%), but

the realised product size is less than predicted (-24%). The realised overall productivity is nearly
half the predicted value (-49%).8 These data need to be further analysed in order to find out the
reasons for these deviations.

! Effectiveness. The cumulative Yield at the Detailed Design phase and the Implementation phase is
very low, 10% and 19% respectively. This implies that many defects are transported to subsequent
phases and that the failure cost in these phases will probably be high. This is confirmed by the fact
that the total amount of rework equals 38% of the overall lifecycle effort.

! Efficiency. The efficiency is very low because many defects have been found in the later phases.
As a consequence, the overall failure cost is high (38% of overall lifecycle effort). This is
confirmed by the fact that the cumulative A/FR before the Detailed Design phase and
Implementation phase is very low (0.02 and 0.03 respectively).

This analysis gives an organisation the possibility to select improvements for future projects, assuming
that this project has not been very exceptional but comparable with similar projects. Improvements
might be:
! Improve the predictability by using a lower productivity figure when estimating projects. In this

way, more realistic estimates will be obtained.
! Increase the quality of the resulting product by increasing the Yield in the earlier development

phases. This can be done by increasing the review effort (A/FR higher) or by adjusting the review
method.

! Improve the efficiency by increasing the A/FR in the various development phases before the
Integration Test phase. Special interest might be given to the Implementation phase and Unit Test
phase as in these phases the Detection Rate and Removal Rate are very high.

In all cases, the available data can be used to make predictions about the expected effects in terms of
return on investment. This is not always easy, as the various parameters might be correlated (for
instance, a higher A/FR will probably contribute to a higher Yield). However by building a record of
experiences, the capabilities in this area can be stepwise improved. In this example the following
approach might be applied in an iterative way:

1. Increase the cumulative A/FR by increasing the appraisal cost in the earlier development
phases.

2. Estimate what the effect will be on the cumulative Yield at the Detailed Design phase: what
will be the reduction of defects injected in the Requirements phase and Architecture phase?

3. Take measures to improve the inspection and review process during the Implementation phase
and Unit Test phase and estimate the effect on the Defect Detection Rate and the Defect
Removal Rate in these phases.

4. Use the cumulative Yield at the Detailed Design phase to predict the number of defects that
will be passed forward to subsequent phases and use the Defect Detection Rate and Defect
Removal Rate to calculate the failure cost.

5. Calculate the effect on effort, time, and expected corrective maintenance cost.
6. Repeat the steps 1 till 5 until satisfactory (and realistic) values have been obtained.

The presented model SLCM and derived metrics is considered to be useful for organisations still
having to build a measurement foundation for their software projects and products as well as for
organisations looking for further improvements of their software processes. The mature organisations
will analyse their available data resulting from SLCM, select the most promising improvements and re-
measure their performance over time. The less mature organisations will not be able to implement

8 Note here, that many organisations tend to calculate the productivity using the development effort only, see equation (16).
It is advised however to use equation (17), giving a far more realistic view.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 11

SLCM from day one, but need to define a strategy how to implement the model in subsequent steps.
The order of the steps can be derived from the most urgent problems the organisation is faced with:
! Predictability. In this case, the first step might be to collect estimates and actuals for size, effort

and time.
! Effectiveness. In this case, the focus is on the output of the project, being the quality of the

product. Important measurements to be considered first are defects (Yield values per phase and
cumulative).

! Efficiency. In this case, attention must be paid to appraisal cost related to failure cost (A/FR) and
defect rates (Defect Detection Rate and Defect Removal Rate).

In all cases, supporting methods and tools might be selected to facilitate the measurements, as long as it
is understood that �a fool with a tool remains a fool�. A method or tool will not solve the problem;
they can only support a defined process.

The presented model SLCM is simple and easy to understand, which is helpful to become adopted by
organisations. The final commitment to its adoption will however probably need tailoring the model to
the characteristics of an organisation, its way of working and its products. There may be a need to
change metrics definitions, leave some metrics out and add other ones. On a lower level, more detailed
information may be generated enabling in-depth analysis. An example is for instance using Orthogonal
Defect Classification to analyse defect data [CHI 1992]. Beyond this, as any other model SLCM also
has its limitations. The most important limitation might be that it focuses on the initial development of
a new product and regards all subsequent versions being part of the maintenance phase. This limitation
might be overcome in the following way:
! A separate model is used for each product version.
! When performing corrective maintenance activities each failure and related effort are allocated to

the product version in which the corresponding defect was introduced.

9. Conclusions and Next Steps

In this article, the software lifecycle model SLCM was introduced. The model offers a measurement
foundation for software projects and products, enabling an organisation to analyse the predictability
(estimation capabilities), effectiveness (product quality) and efficiency (process productivity). The
model is based on PSP metrics, which have been promoted to the level of a project and definitions have
been slightly adjusted to include the maintenance phase as well. This approach might be of help to any
organisation irrespective of their maturity regarding software process and metrics. The strength of this
simple approach is that every professional manager will understand the need to collect this data in
order to support quantitative decision-making. Its simplicity might be a weakness, however it offers
two advantages. In the first place, a decision-maker simplifies reality and prefers simple rules of thumb
as a consequence of limited cognitive capabilities [SIM 1982]. The model supports this concept of
bounded rationality. Overly complex models will be adopted less easily. In the second place, the model
focuses on macroscopic measurements. Getting data at this level and being able to make the right
interpretations is the first step in maturing the software industry. Only when these improvements have
proved to be successful and sustainable, the granularity of measurements can be enlarged.

At this moment, the concept version of SLCM has been distributed to a limited number of
organisations. They have shown their interest in using the model and will give feedback of their
findings and results. This must lead to an improved and official version 1.0 of the model. Organisations
willing to participate and use the materials are kindly requested to contact the author.

About the author
Hans Sassenburg (hsassenburg@se-cure.ch) received a Master of Science degree in Electrical
Engineering from the Eindhoven University of Technology in 1986 (The Netherlands). During his
study years he founded a one-person consulting firm and worked as an independent consultant. In 1996
he co-founded a new consulting and training firm (Alert Automation Services b.v.). From 1996 till
2001 he worked as a guest lecturer and assistant professor at the Eindhoven University of Technology.
In 2001 he moved to Switzerland where he founded a consulting firm (SE-CURE AG, www.se-
cure.ch). Having finished his first book �Software Engineering: van ambacht naar professie� (ISBN
90-72194-64-0), he started a Ph.D. research at the Faculty of Economics at the University of Groningen

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 12

(The Netherlands) under the supervision of Prof. Egon Berghout (e.w.berghout@eco.rug.nl). His
second book �Software Development from an Economic Perspective� will be published in 2004.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 13

References
[BER 2001] �Full life-cycle management and the IT Management paradox�, E.W.Berghout,

M.Nijland, in D.Remeny & A.Brown (Eds.): �Make or Break Issues in IT
Management�, Butterworth-Heinemann.

[BOE 1981] �Software Engineering Economics�, B.W.Boehm, Prentice-Hall.
[CHI 1992] �Orthogonal Defect Classification � A Concept for In-Process Measurements"

R.Chillarege et al, IEEE Transactions on Software Engineering, Vol.18, No.11.
[COL 1993] �The Application of Software Maintainability Models on Industrial Software

Systems�, D.Coleman et al., University of Idaho, Software Engineering Test Lab,
Report No. 93-03 TR.

[HUM 1995] �A Discipline for Software Engineering�, W.S.Humphrey, Addison-Wesley.
[HUM 1997] �Introduction to the Personal Software Process�, W.S.Humphrey, Addison-Wesley.
[IEE 1988a] �IEEE Standard Dictionary of Measures to Produce Reliable Software�, IEEE Std.

982.1, The Institute of Electrical and Electronics Engineers.
[IEE 1988b] �IEEE Guide for the Use of IEEE Standard Dictionary of Measures to Produce

Reliable Software�, IEEE Std. 982.1, The Institute of Electrical and Electronics
Engineers.

[IEE 1998] �IEEE Standard for Software Maintenance�, IEEE Std. 1219, The Institute of
Electrical and Electronics Engineers.

[KIT 1996] �Software Quality: The Elusive Target�, B.Kitchenham, S.L.Pfleeger, IEEE
Software, Vol. 13, No. 1, pp. 12-21.

[McK 1984] �Maintenance as a function of design�, J.R.McKee, Proceedings AFIPS National
Computer Conference, Las Vegas (USA).

[NOS 1990] �Software Maintenance Management: changes in the last decade�, J.T.Nosek,
P.Palvia, Software Maintenance: Research and Practice (2).

[OMA 1994] �Constructing and testing of Polynomials Predicting Software Maintainability�,
P.Oman, J.Hagemeister, Journal of Systems and Software, Vol. 24 (3), March.

[SAS 2002] �Reviews: why and how?�, J.A.Sassenburg, Informatie, October, pp. 16-21 (in
Dutch).

[SAS 2003] �When to release the software?�, J.A.Sassenburg, Proceedings of the European
SEPG, London (UK).

[SEI 2002] �Process Maturity Profile of the Software Community, 2001 Year End Update�,
website www.sei.cmu.edu, Software Engineering Institute.

[SIM 1982] �Models of Bounded Rationality�, H.Simon, Vol. 2, Cambridge, MIT Press.
[ZAH 1998] �Software Process Improvement - Practical Guidelines for Business Success�,

S.Zahran, Essex: Addison Wesley Longman.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 14

Requirements

Process
Script

Finished product

Analysis

Design Review

Code

Code Review

Compile

Test

Post Mortem

Time Log
Form

Defect Log
Form

Code Review
Checklist

Project Plan

Summary

de
fe

ct
 a

nd
 ti

m
e

da
ta

actual data

Design Review
Checklist

Design

improvements

estimates

Repository

benchmark data

Figure 1: Process flow of the Personal Software Process (based on [HUM 1997, p. 125]).

1000

100

10

1 40
x

- 1
00

0x

30
x

- 7
0x

15
x

- 4
0x

10
x

3x
 -

6x

1x

Design Detailed Design
+

Implementation

Unit Test Integration
+

System Test

Maintenance

re
la

tiv
e

co
st

 to
 re

pa
ir

a
re

qu
ire

m
en

ts
 d

ef
ec

t

Requirements

Figure 2: Repair cost of a requirements defect [BOE 1981].

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 15

Yield0% 100%

co
st

total cost
= sum (appraisal cost, failure cost)

failure costappraisal cost

Point of Optimality

Figure 3: Relationship between appraisal cost, failure cost, and Yield [SAS 2002]. 9

9 Figure 2 is just an example. The slope of the curves and thus also their intersection depend on factors like the type of

application and the maturity of the development process. This also means that the minimum of the sum of preventive cost
and rework cost is not necessarily the intersection of the two curves (A/FR equal to 1).

SL
C

M
: A

 S
of

tw
ar

e
Li

fe
cy

cl
e

M
od

el
 to

 su
pp

or
t S

PI
 a

nd
 S

of
tw

ar
e

M
et

ri
cs

C

on
ce

pt
 p

ap
er

, d
d.

 2
5th

 S
ep

t.
20

03

H
an

s S
as

se
nb

ur
g

©
 2

00
3,

 S
E-

C
U

RE
 A

G
 (w

w
w

.se
-c

ur
e.

ch
)

16

 S
LC

M

Si
ze

 (K
LO

C
)

Ef
fo

rt
 (H

ou
rs

)

Ti

m
e

(D
ay

s)

D
ef

ec
ts

 (c
ou

nt
)

(v
er

si
on

 0
.1

)

M

an
ag

em
en

t
Te

ch
ni

ca
l

Ap
pr

ai
sa

l
Fa

ilu
re

Es

t.
Ac

t.
Es

t.
Ac

t.
Es

t.
Ac

t.
Es

t.
Ac

t.
Es

t.
Ac

t.
Es

t.
Ac

t.
R

A

D
D

I

U
T

IT

ST

M

R
eq

ui
re

m
en

ts

10
0

11
0

20
0

24
0

50

16

20

8
40

30

1

0
0

0
0

0
0

0

Ar
ch

ite
ct

ur
e

15
0

17
0

45
0

50
0

50

16

40

10

50

40

2
3

0
0

0
0

0
0

D
et

ai
le

d
D

es
ig

n

20

0
23

0
80

0
50

0
70

60

60

50

80

60

2

2
9

0
0

0
0

0

Im
pl

em
en

ta
tio

n

20

0
26

0
80

0
10

00

70

40

60

50

12
0

15
0

4
4

24

15

0
0

0
0

U
ni

t T
es

t

20

0
30

0
80

0
12

00

30

20

60

50

30

60

6
3

20

15

5
0

0
0

In
te

gr
at

io
n

Te
st

20

0
27

0
80

0
40

0
0

25
0

40

40
0

20

70

12

7
13

18

5

4
0

0

S
ys

te
m

 T
es

t

20

0
27

0
60

0
20

0
0

35
0

30

80
0

10

80

18

6
7

4
5

6
7

0

M
ai

nt
en

an
ce

50

12

0
0

0
0

0
70

0
26

50

40
0

40
0

9
14

27

10

3
5

9
4

8

To
ta

l
10

0
76

13

00

17
30

44

50

40
40

27

0
75

2
10

10

40
18

75

0
89

0
54

39

10

0
15

5
20

19

11

8

M
ai

nt
ai

na
bi

lit
y

In
de

x

60

So
ftw

ar
e

M
at

ur
ity

 In
de

x

0.
3

Es
tim

at
io

n

R

A
D

D

I
U

T
IT

ST

M

To

ta
l

Su

m
m

ar
y

Es
t.

Ac
t.

D
iff

.

Es

tim
at

ed

37
0

69
0

11
30

11

30

10
90

10

40

83
0

75
0

70
30

Si
ze

10

0
76

-2

4%

Ac
tu

al

37
4

69
6

84
0

13
50

15

70

13
20

16

20

27
70

10

54
0

Ef

fo
rt

70
30

10

54
0

50
%

Ef

fo
rt

 D
iff

.
1%

1%

-2

6%

19
%

44

%

27
%

95

%

26
9%

50

%

Ti

m
e

75
0

89
0

19
%

Es

tim
at

ed

40

50

80

12
0

30

20

10

40
0

75
0

Pr

od
uc

tiv
ity

14

.2
2

7.
21

-4

9%

Ac

tu
al

30

40

60

15

0
60

70

80

40

0
89

0

Ti

m
e

D
iff

.
-2

5%

-2
0%

-2

5%

25
%

10

0%

25
0%

70

0%

0%

19
%

D

is
tr

ib
ut

io
n

Ef
fo

rt

R

A
D

D

I
U

T
IT

ST

M

To

ta
l

Ti

m
e

R

A
D

D

I
U

T
IT

ST

M

M

an
ag

em
en

t
1%

2%

2%

2%

3%

3%

3%

1%

16

%

Ph

as
e

3%

4%

7%

17
%

7%

8%

9%

45

%

Te

ch
ni

ca
l

2%

5%

5%

9%

11
%

4%

2%

0%

38

%

C

um
ul

at
iv

e
3%

8%

15

%

31
%

38

%

46
%

55

%

10
0%

Pr

ev
en

tio
n

0%

0%

1%

0%

0%

2%

3%

0%

7%

R

ew
or

k
0%

0%

0%

0%

0%

4%

8%

25

%

38
%

To

ta
l

4%

7%

8%

13
%

15

%

13
%

15

%

26
%

10

0%

Pr
oc

es
s

Yi
el

d
R

A

D
D

I

U
T

IT

ST

M

A/
FR

R

A

D
D

I

U
T

IT

ST

M

Ph

as
e

2%

5%

7%

14
%

16

%

22
%

24

%

10
0%

Ph

as
e

2.
00

1.

60

1.
20

0.

80

0.
40

0.

63

0.
44

0.

00

C

um
ul

at
iv

e
2%

6%

10

%

19
%

31

%

45
%

57

%

10
0%

C

um
ul

at
iv

e
0.

00

0.
01

0.

02

0.
03

0.

04

0.
12

0.

28

-
O

th
er

s

R

A
D

D

I
U

T
IT

ST

M

Pr

od
uc

tiv
ity

 R
 -

ST

9.

78

LO
C

/h
ou

r

D
et

ec
tio

n
0.

06

0.
31

0.

22

1.
18

2.

45

0.
24

0.

15

0.
00

de

fe
ct

s/
ho

ur

Pr
od

uc
tiv

ity
 R

 -
M

7.

21

LO
C

/h
ou

r

R
em

ov
al

0.

13

0.
50

0.

26

0.
94

0.

98

0.
15

0.

07

0.
07

de

fe
ct

s/
ho

ur

M
ea

su
re

d
R

el
ia

bi
lit

y

2.

36

fa
ilu

re
s/

KL
O

C

 Fi
gu

re
 4

: S
LC

M
 d

at
as

he
et

.

SLCM: A Software Lifecycle Model to support SPI and Software Metrics Concept paper, dd. 25th Sept. 2003

Hans Sassenburg © 2003, SE-CURE AG (www.se-cure.ch) 17

0

500

1000

1500

2000

2500

3000

R A DD I UT IT ST M

Phase

H
ou

rs Estimated

Actual

Figure 5a: Effort Estimation Accuracy.

0

50

100

150

200

250

300

350

400

450

R A DD I UT IT ST M

Phase

D
ay

s Estimated

Actual

Figure 5b: Time Estimation Accuracy.

0%

5%

10%

15%

20%

25%

30%

R A DD I UT IT ST M

Phase

Ef
fo

rt
 (p

er
ce

nt
ag

e)

Failure

Appraisal

Technical

Management

Figure 5c: Categorized Effort per Phase.

0%

10%

20%

30%

40%

50%

60%

R A DD I UT IT ST

Phase

Yi
el

d Phase

Cumulative

Figure 5d: Yield.

0.00

0.50

1.00

1.50

2.00

2.50

R A DD I UT IT ST

Phase

A
/F

 R
at

io

Phase

Cumulative

Figure 5e: Appraisal/Failure Ratio.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

R A DD I UT IT ST M

Phase

de
fe

ct
s/

ho
ur

Figure 5f: Defect Detection Rate.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

R A DD I UT IT ST M

Phase

de
fe

ct
s/

ho
ur

Figure 5g: Defect Removal Rate.

Figure 5: SLCM Graphs.

