
© CGI Group Inc. CONFIDENTIAL

Acceptance Test Driven Development
Applicable in both V-model and Agile
Chris Schotanus, Meile Posthuma & Maurice Koster

Test First, Build Next

V 2014.1.0.8

Acceptance Driven Development - Agenda

• Introduction of (Acceptance) Test Driven Development

• Workshop

• Demo of Tooling used with ATDD

• Evaluation

3

Introducing Test Driven Development

4

eXtreme Programming’s “Test First” principle

• Create test cases before writing code

• Business representatives write acceptance tests to demonstrate that user

stories are correctly implemented

• Programmers continually write component tests which must run flawlessly

for development to continue

• “We only write new code when we have a test that doesn’t work”

5

Quotes from Important Testers

“More than the act of testing, the act of designing

tests is one of the best defect preventers known …

The thought process that must take place to create

useful tests can discover and eliminate problems

at every stage of development” Boris Beizer

“One of the most effective ways of specifying

something is to describe (in detail) how you would

accept (test) it if someone gave it to you.” Bill Hetzel

6

Introducing Test Driven Development

Although the technique is quite old, Kent Beck introduced the name in

2003. The principle is that the developer starts writing tests which are

used to test the code that the developer will write.

7

Test Driven Development (TDD) is a software development technique!

RED

GREEN REFACTOR

TDD

TDD compared with “Traditional Testing”

8

Build First, Test Next Test First, Build Next

Pick a requirement

Write a test to meet the

requirement

Run Test

Test

Successful?

Modify code

Yes

No

Refactor

The goal of Test Driven Development

To write clean code that works, and for a

whole bunch of reasons:

Clean code that works:

• is a predictable way to develop.

• gives you a chance to learn all the lessons

that the code has to teach you.

• improves the lives of users of our software.

• lets your teammates count on you, and you

on them.

Writing clean code that works feels good.

9

From Kent Beck, Test Driven Development by example

Test Driven Development: “The Three Laws”

1. You may not write production

code until you have written a

failing component test.

2. You may not write more of a

component test than is sufficient

to fail, and not compiling is

failing.

3. You may not write more

production code than is sufficient

to pass the currently failing test.

10

Advantages of TDD

• Test Coverage. 100% Statement coverage is implicitly reached.

• Test Repeatability. The tests can be run any time you like.

• Documentation. The tests describe your understanding of how the

code should behave. They also describe the API. Therefore, the tests

are a form of documentation.

• API Design. When you write tests first, you put yourself in the position

of a user of your program's API. This can only help you design that API

better.

• System Design. A module that is independently testable is a module

that is decoupled from the rest of the system.

• Reduced Debugging. Debugging time is reduced enormously.

• Your code worked a minute ago! If you observe a team of

developers who are practicing TDD, you will notice that every pair of

developers had their code working a minute ago.

11

Some questions to answer

Which of the following is not one of the “thee laws” of TDD?

A – You may not write production code until you have written a failing

component test.

B – You may not use tools to debug your production code in case of a

failing test

C – You may not add comment lines in order to keep your code clean

D – You may not write more production code than is sufficient to pass the

currently failing test

What is the correct sequence?

A – Write a test case, Write the code, Compile the code, refactor the code

B – Write the code, Compile the code, Write a test case, Run the code,

Run the test

C – Write a test case, Run the test, Write the code, Compile the code,

Run the test, Refactor the code

D – Compile the code, Write a test case, Run the test, Refactor the code

12

The correct answers

Which of the following is not one of the “thee laws” of TDD?

B – You may not use tools to debug your production code in case of a

failing test

C – You may not add comment lines in order to keep your code clean

What is the correct sequence?

C – Write a test case, Run the test, Write the code, Compile the code,

Run the test, Refactor the code

13

The correct answers

Which of the following is not one of the “thee laws” of TDD?

B – You may not use tools to debug your production code in case of a

failing test

C – You may not add comment lines in order to keep your code clean

What is the correct sequence?

C – Write a test case, Run the test, Write the code, Compile the code,

Run the test, Refactor the code

13

Acceptance TDD

Aka Behaviour Driven Development

Aka Specification By Example
14

Test first, build next!

 15

RED

GREEN REFACTOR

TDD

Test first, build next!

 15

RED

GREEN REFACTOR

TDD

 Acceptance

Test Driven

Development

Test

Driven

Development

Domain

Driven

Design

aka Behaviour Driven

Development (BDD)

A

16

Limitation of TDD

Test-driven development has proven

that writing tests before coding can

produce higher quality code. Still often

customer requirements can be

misunderstood.

TDD leads to high quality software.

It’s not guaranteed that it lead to the correct software

16

Limitation of TDD

Test-driven development has proven

that writing tests before coding can

produce higher quality code. Still often

customer requirements can be

misunderstood.

A technique called acceptance test-

driven development (ATDD) can

reduce this risk

TDD leads to high quality software.

It’s not guaranteed that it lead to the correct software

ATDD

Write an

acceptance

 test

Run the

acceptance

test

TDD combined with Acceptance testing

17

Create

software

Make the

test pass
REFACTOR

TDD

Write a

failing

test

TDD combined with ATDD

Add an acceptance test

Run the acceptance tests

Write/change the code

Run the acceptance tests

No

Test

Successful?

Yes

Test

Successful?

 Yes

No

start

Last

Function?

 No

Yes

end

Add a component test

Run the component tests

Write/change the code

Run the component tests

Test

Successful?

 Yes

No

Test

Successful?

Yes

No

Functionality

Complete?

Yes

No

Developer TDD Acceptance TDD

18

So, Why (Acceptance) Test Driven Development?

• One of the biggest problems in software is requirements ambiguity

• A direct result of using natural language specifications (e.g., “The system

shall be fast”)

• A test case is inherently unambiguous

• Test cases are unambiguous “proxies” for requirements

19

But in Linear development too

Adding (acceptance) test cases to the Request for Change (RfC) or

UC will dramatically improve the quality of these documents and

will reduce failures due to misunderstanding

20

Acceptance Test Driven Development

Using test conditions and test cases as design documentation

21

Acceptance Test Driven Development

Using test conditions and test cases as design documentation

Test conditions

Test approach

21

Sprint: avg. 3 user stories + script

S
T

 u
s
1

US 1 US 2
R

T
 u

s
1

IT

S
T

 u
s
3

US 3 R
T

u
s
1
-2

IT
ST us

2

D
E

M
O

E2E

SIT ORT

Sprint

3-4 weeks

Buss.

UAT

Production US = User Story

ST = System test

IT = Integration test of

 user story results

TC = Test Case

RT = Regression test within sprint

SIT = System Integration test

ORT = Overall Regression Test

UAT = User Acceptance Test

Testing in a sprint

22

Sprint: avg. 3 user stories + script

S
T

 u
s
1

US 1 US 2
R

T
 u

s
1

IT

S
T

 u
s
3

US 3 R
T

u
s
1
-2

IT
ST us

2

D
E

M
O

E2E

SIT ORT

Sprint

3-4 weeks

Buss.

UAT

Production US = User Story

ST = System test

IT = Integration test of

 user story results

TC = Test Case

RT = Regression test within sprint

SIT = System Integration test

ORT = Overall Regression Test

UAT = User Acceptance Test

Testing in a sprint

22

Some questions to answer

TDD does not guarantee correct software. That is because:

A – Programmers are not subject matter experts

B – Programmers just can’t produce correct software

C – At component level requirements may well be misunderstood

D – TDD Frameworks may contain bugs too.

Which of the following statements is correct

I – ATDD must be automated

II – TDD can be automated

A – I and II are correct

B – I and II are incorrect

C – I is correct, II is incorrect

D – I is incorrect, II is correct

23

The correct answers

TDD does not guarantee correct software. That is because:

C – At component level requirements may well be misunderstood

Which of the following statements is correct

I - ATDD must be automated

II – TDD can be automated

B – I and II are incorrect:

ATDD is an approach in which test cases are defined in advance. It is

preferable but not necessary to automate the execution.

TDD is done with tools in the development environment and will always b

eautomated.

24

The workshop

Part one, define acceptance criteria

25

Defining ATDD test cases

The theory

26

Object: Car
Colour: Red
Seats: 2
Engine power output: 300hp

An example or requirement specification

Object: Car
Colour: Red
Seats: 2
Engine power output: 300hp

Loading cap: 3.5 tons

An example or requirement specification

The Toyota Way

1. Check at the source

2. Verifications are (and should be) inexpensive

3. Test to prevent defects, not to discover them

28

The basics

Examples Tests

Requirements

Can become

Source: Gojko Adzic: Specification by Example

Generic approach of ATDD

30

• Use real-world examples to build understanding

• Create acceptance criteria from these examples

• Use acceptance criteria as specifications

• Create automated acceptance test cases

• Test delivered software using automated acceptance test cases

A good acceptance test is

• Focused on a single element (step, rule…)

• Not a script

• Self-explanatory

• SMART

• Specific

• Measurable

• Achievable

• Realistic

• Time-bound

31

Implementing Acceptance Criteria

Validate that a story has been developed with the functionality the

Product Owner had in mind.

• Test cases fill in the details of the story.

• Write tests before programming – Test first, build next.

• Execute test at end of sprint as demo

• Test cases are delivered as system documentation.

32

USER STORY CHECKLIST

Title: Book a flight

ID: US12a

Scenario: As a member of the F&H club I can use Fresh points to

pay for a flight so that I can travel for free

Estimation: 13 points Priority: High

This is an acceptance criterion

Using test conditions and test cases as design documentation

33

Business Rules:

C1 -

C2 - The return date must be later than or equal to the arrival date

C3 -

C4 -

From Test Conditions to Test Cases

Test Cases in standard keyword driven format (TestFrame)

34

Test Condition US12a-C2 The return date must be later than or equal to the arrival date

Test case US12a-C2-T2 Arrival date is later than return date
Login to F&H

Fresh & Honest Club number Password

login f&h club 123.456.789.0 abcd

Search a flight with invalid dates

Departure City Destination City Departing Returntrip Returning

search flight ams cdg &Date(),17 Yes &Date(),15

Message

check message Date of return flight is incorrect!

And this is a test case in another format

Given user "123.456.789.0" with password "abcd" is logged in

And departure city is "AMS"

And destination city is "CDG"

And return trip

When departure date is 17 days after today

And return date is 15 days after today

And query is submitted

Then the alert "Date of return flight is incorrect!" is shown

http://www.caplin.com/developer/component/verifier/reference/verifier-

given-when-then-syntax-reference

35

http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference
http://www.caplin.com/developer/component/verifier/reference/verifier-given-when-then-syntax-reference

Defining Acceptance Test Cases

How to define ATDD Test cases

Gherkin is a Business Readable, Domain Specific Language created

especially for behavior descriptions. It gives you the ability to remove

logic details from behavior tests.

Gherkin serves two purposes: serving as your project’s documentation

and automated tests. That also has a bonus feature: it talks back to you

using real, human language telling you what code you should write.

38

Examples in Gherkin

In fact it is keyword driven testing

Given user "123.456.789.0" with password "abcd" is logged in

And departure city is "AMS"

And destination city is "CDG"

And return trip = “Y”

When departure date is 17 days after today

And return date is 15 days after today

And query is submitted

Then the alert "Date of return flight is incorrect!" is shown

38

Examples in Gherkin

In fact it is keyword driven testing

Given user "123.456.789.0" with password "abcd" is logged in

And departure city is "AMS"

And destination city is "CDG"

And return trip = “Y”

When departure date is 17 days after today

And return date is 15 days after today

And query is submitted

Then the alert "Date of return flight is incorrect!" is shown

Keyword

Parameter

Reuse using tables

Data driven testing

Given user "123.456.789.0" with password "abcd" is logged in

And departure city is "AMS"

And destination city is "CDG"

And return trip “Y”

When departure date is 17 days after today

And return date is 15 days after today

And query is submitted

Then the alert "Date of return flight is incorrect!" is shown

39

user password Dept

city

Dest

city

return Dept date

(now+#days)

Ret Date

(now+#days)

Allert

123.456.789.0 abcd AMS CDG N 13 - Bookingdate must be 14

days in the future

123.456.789.0 abcd AMS CDG Y 17 17 No alert

The agile paradigm shift

40

Due to agile development we

achieved what seemed to be

unachievable in

V-model development:

As a tester being involved at the very

start of systems development!

The workshop

Creating test cases

41

Tooling

Tools available

Jbehave: http://jbehave.org/

Fit: http://fit.c2.com/

FitNesse: http://fitnesse.org/

Easyb: http://www.easyb.org/

Cucumber: http://cukes.info

Robot: http://code.google.com/p/robotframework/

Arbiter: http://arbiter.sourceforge.net/

Concordian: http://www.concordion.org/

Selenium: http://seleniumhq.org

Watir: http://watir.com/

Twist: http://www.thoughtworks.com/products/twist-agile-testing

http://jbehave.org/
http://jbehave.org/
http://fit.c2.com/
http://fit.c2.com/
http://fitnesse.org/
http://fitnesse.org/
http://www.easyb.org/
http://www.easyb.org/
http://cukes.info/
http://cukes.info/
http://code.google.com/p/robotframework/
http://code.google.com/p/robotframework/
http://arbiter.sourceforge.net/
http://arbiter.sourceforge.net/
http://www.concordion.org/
http://www.concordion.org/
http://seleniumhq.org/
http://seleniumhq.org/
http://watir.com/
http://watir.com/
http://watir.com/
http://www.thoughtworks.com/products/twist-agile-testing
http://www.thoughtworks.com/products/twist-agile-testing
http://www.thoughtworks.com/products/twist-agile-testing
http://www.thoughtworks.com/products/twist-agile-testing
http://www.thoughtworks.com/products/twist-agile-testing
http://www.thoughtworks.com/products/twist-agile-testing
http://www.thoughtworks.com/products/twist-agile-testing

Demo Robot Framework

More information: some books

Lisa Crispin et al.: Agile Testing: A Practical Guide for Testers and Agile

Teams

Kent Beck: Test Driven Development: By Example

Kent Beck: Extreme Programming Explained: Embrace Change,

Markus Gärtner: ATDD by Example: A Practical Guide to Acceptance

Test-Driven Development

Ken Pugh: Lean-Agile Acceptance Test-Driven Development

Gojko Adzic: Specification by Example

Training created by chris.schotanus@cgi.com

45

