
1

Software Testing and  IEC 61508 – 
Project case study and further thoughts

Ian Gilchrist



2

Topics

1. Introduction to the NASS Project
2. NASS Testing Strategy

• Code and Module Testing
• Integration Testing
• System Level Testing

3. Conclusions from Project
4. Reflections on IEC 61508 and Testing



3

Introduction 
to the NASS 
project



4

UK Motorway SystemsUK Motorway Systems
Highways Agency (HA) has overall control

NMCS2 = National Motorway Communications System (2)
• Controls roadside equipment and monitors road conditions

ATM = Active Traffic Management
• Trial program on motorways around Birmingham
• Control traffic according to actual and predicted conditions

NASS = Network ATM Supervisory Subsystem
• An additional element with existing NMCS2 and future ATM 

systems
• Predicts congestion, and sets signals and message signs to 

minimise it



5

NASS HistoryNASS History
NASS contract for specification, implementation and design was 
awarded to IPL in 2002

Phase Delivered Name Purpose Approx
code size

A Jan 2004 Proof of 
concept

Prove 
concept

20 KLoC

B Apr 2005 Demonstrator Testbed for 
rules

60 KLoC

C Mar 2007 NASS V1 Live use 115 KLoC



6

NASS and IEC 61508 SILNASS and IEC 61508 SIL
Highways Agency elected to apply IEC 61508 as the 

software development/safety standard to be 
used.

• Some hazards were identifiable

IPL recommended to apply at SIL 1
• NASS does not directly control equipment
• Just issues requests for sign and signal settings
• These may have safety consequences



7

NASS Software Design

Following System Requirements Spec 
acceptance, used design method based on UML
• Sub-systems (6 in total)
• Components (now 23 in total)

•Executables
•(Dynamic Linked) Libraries

• Modules (now 280 in total)
•C++ classes

+Public and Private methods
+Code flow shown in pseudo-code

Implementation on Windows, coded with 
MSVC++ V6



8

NASS 
Testing 
Strategy



9

NASS Testing Strategy

HA and IPL project team created a test strategy based on 
formalised (i.e. independent) testing for

• Each and every entity
• At each every identifiable stage of the project

Each test had its own plan:
• Component and Module tests defined in associated spec
• All higher level tests had own plan in separate document

All tests need to be
• Repeatable
• Self-documenting (results)



10

NASS Testing Strategy

Design Document Informs Test Plan for

Existing NMCS 
documentation

System Interaction Test

NASS System Req’ts Spec Factory and Site 
Acceptance tests

Architectural Design Spec System Integration Tests

Sub-System Design Specs System Integration Tests

Component Specs Component tests

C++ Class Specs Module tests



11

NASS Module TestingNASS Module Testing
Each C++ class tested in isolation, using 
Cantata++
• Stubs and Wrappers used to provide the 
‘isolation’ of each class from external 
interfaces

• Test coverage of 100% Entry-point was 
mandatory

• Project optionally did coverage to 100% 
Statement, Decision, and ‘Condition’ coverage 
(MC/DC definition)
•Useful additional confidence



12

NASS Software Integration Testing

After Module testing there were two levels of Software 
Integration Testing:

• Component Testing (executables and DLLs)
•Also used Cantata++ 
•Dummy database for input of data and opportunity to check 
expected outputs

• Sub-System Testing
•100% Entry-point coverage (measured with Cantata++?)



13

NASS System Testing
Several layers of formalised System Tests

• System Integration Tests
•Independently witnessed by IPL QA staff
•Revealed very few faults
•Confidence building for next stage:

• Factory Acceptance Tests
•Witnessed by HA staff at IPL offices
•Took 20 days to run

• System Interaction Tests
•Run at offices of Peek Traffic
•Demonstrated NASS running smoothly and safely in an exact 
replica of NMCS2 installation

• Site Acceptance Tests
•Live running of NASS on NMCS2 with simulated data at 
Regional Control Centre



14

NASS Testing – all levelsNASS Testing – all levels
Name Aimed at Tool Comments

Modules C++ Classes Cantata++ 283 in total

Components Exes and DLLS Cantata++ 23 in total

[Regression All modules and 
components

Cantata++ and 
IPL framework

Run nightly]

Software 
Integration

Sub-systems and 
aspects of System

IPL-developed 
simulators

System 
Integration

System IPL-developed 
simulators

Dry-run for FATs

Factory 
Acceptance

System IPL-developed 
simulators + HA 
‘portable standard’

Witnessed by HA

System Interaction System Test rig at Peek Witnessed by HA

Site Acceptance System Live at RCC Witnessed by HA



15

NASS 
Testing

Project 
Conclusions



16

NASS Project ConclusionsNASS Project Conclusions
Testing served two main purposes
• Developers gained confidence to move from one 

stage to the next
• Customer (HA) gained confidence that system will 

work reliably and safely
Other general observations:
• Occupied a large chunk (>50%) of overall project 

effort
• Testing strategy determined in advance was very 

useful, with test plans being vital for success
• Test repeatability was very useful
• Test self-documentation was very useful



17

NASS Project ConclusionsNASS Project Conclusions
Class test plans were too detailed
• Amount of work disproportionate to benefit gained
• Better concentrate on black-box test planning
• Test classes as whole ‘objects’ better than methods

Choice of coverage level was good
• Could have done less than did
• Amount done will easily qualify for SIL 2 if needed

Integration test work was valuable
• Some of the integration tests might have been left out
• In practice were useful at finding faults in low-level 

design



18

Reflections on IEC  61508 and 
Testing Requirements



19

IEC 61508 and TestingIEC 61508 and Testing
The standard was published 1998
• It is now 10 years old
• Based on ideas more than 10 years old
• Is arguably 20 years ‘out of date’

Time to rethink?
• Recommendations still valid and useful?
• Should modern practices be brought in?

Not lose sight of the main aim of testing:
• ‘Performs its intended function’
• ‘Does not perform unintended function’



20

IEC 61508/3 and TestingIEC 61508/3 and Testing
Look at sections:
• 7.4.7 [Software Module Testing]
• 7.4.8 [Software Integration Testing]

And tables:
• A.5 [Software Modules Testing and Integration]
• B.2 [Dynamic Analysis and Testing’]
• B.3 [Functional and Black-Box Testing]
• B.6 [Performance Testing]

Refer as needed to 61508/7 [Overview of 
Techniques and Measures]



21

Integration TestingIntegration Testing
There is not normally much argument about 
‘what is Module Testing’
• It was what is done by default as the first level of 

testing
Integration Testing is a moveable feast
• There may be several layers of Integration testing
• It may be omitted altogether
• What is appropriate in one kind of integration (e.g. 

software integration) may not be at another (e.g. 
hardware-software integration



22

Table A.5 ‘Software Module Testing and Integration’Table A.5 ‘Software Module Testing and Integration’

Technique Comment
Probabilistic testing
(HR at SIL 4)

Software is usually deterministic at the these levels so of dubious 
relevance.

Dynamic analysis and 
testing (HR at SILs 2-4)

See comments for Table B.2

Data recording and 
analysis (HR at all SILs)

‘Recording’ seems merely an aspect of project documentation; why label 
it as a technique? ‘Analysis’ is undefined except that it ‘may establish a 
wide variety of information’.

Functional and Black- 
box testing (HR at all 
SILs)

This corresponds to what most developers would class as the normal 
purpose of testing at these levels. 

Performance testing (HR 
at SILs 3-4)

Questionable whether applicable at these levels as it would be rare to 
specify performance. It would seem more appropriate to shift this item to 
system level testing rather than keep it here.

Interface testing (HR at 
SILs 3-4)

As described in Part 7 this would seem an unjustifiable burden on 
developers. 



23

Table A.5 ‘Software Module Testing and Integration’Table A.5 ‘Software Module Testing and Integration’

Technique Comment
Probabilistic testing
(HR at SIL 4)

Software is usually deterministic at the these levels so of dubious 
relevance.

Dynamic analysis and 
testing (HR at SILs 2-4)

See comments for Table B.2

Data recording and 
analysis (HR at all SILs)

‘Recording’ seems merely an aspect of project documentation; why label 
it as a technique? ‘Analysis’ is undefined except that it ‘may establish a 
wide variety of information’.

Functional and Black- 
box testing (HR at all 
SILs)

This corresponds to what most developers would class as the normal 
purpose of testing at these levels. 

Performance testing (HR 
at SILs 3-4)

Questionable whether applicable at these levels as it would be rare to 
specify performance. It would seem more appropriate to shift this item to 
system level testing rather than keep it here.

Interface testing (HR at 
SILs 3-4)

As described in Part 7 this would seem an unjustifiable burden on 
developers. 



24

Table B.2 ‘Dynamic Analysis and Testing’Table B.2 ‘Dynamic Analysis and Testing’

Technique Comment
Test case execution from 
boundary-value analysis
(HR for SILs 2-4)

This is a valid activity when combined with equivalence class testing as a 
means of boosting confidence in software beyond that already achieved 
with basic functional/structure-based testing.

Test case execution from 
error guessing (R at all 
SILs)

Based on the description given in Part 7 this seems a bit random (though 
based on ‘experience and intuition’). 

Test case execution from 
error seeding (R at SILs 
2-4)

This is not really testing but a way of attempting to gauge the 
effectiveness of existing tests. It is highly arbitrary (who decides what 
errors to seed), and has little to recommend it.

Performance modelling 
(HR at SIL 4)

It is unclear why this is included here. Modelling is a validation technique, 
not testing.

Equivalence classes and 
input partition testing 
(HR at SIL 4)

See comment for boundary-value analysis above.

Structure-based testing 
(HR at SILs 3-4)

This relates to the widely accepted technique of measuring test coverage. 
See final section.



25

Table B.2 ‘Dynamic Analysis and Testing’Table B.2 ‘Dynamic Analysis and Testing’

Technique Comment
Test case execution from 
boundary-value analysis
(HR for SILs 2-4)

This is a valid activity when combined with equivalence class testing as a 
means of boosting confidence in software beyond that already achieved 
with basic functional/structure-based testing.

Test case execution from 
error guessing (R at all 
SILs)

Based on the description given in Part 7 this seems a bit random (though 
based on ‘experience and intuition’). 

Test case execution from 
error seeding (R at SILs 
2-4)

This is not really testing but a way of attempting to gauge the 
effectiveness of existing tests. It is highly arbitrary (who decides what 
errors to seed), and has little to recommend it.

Performance modelling 
(HR at SIL 4)

It is unclear why this is included here. Modelling is a validation technique, 
not testing.

Equivalence classes and 
input partition testing 
(HR at SIL 4)

See comment for boundary-value analysis above.

Structure-based testing 
(HR at SILs 3-4)

This relates to the widely accepted technique of measuring test coverage. 
See final section.



26

Table B.3 ‘Functional and Black-box Testing’Table B.3 ‘Functional and Black-box Testing’

Technique Comment
Test case execution from 
cause-consequence 
diagrams (R at SILs 3-4)

Applicability depends on the  prior production of cause-consequence 
diagrams. It is not evident that this is a recognised technique in modern 
terms, though an equivalent might be sought in UML terminology.

Prototyping/animation (R 
at SILs 3-4)

These techniques see more related to a validation activity than 
verification/testing.

Boundary-value analysis 
(HR at SILs 2-4)

It is questionable whether this approach  to generating test inputs is a 
practical proposition at system test level. The combinatorial effect of 
generating all possible boundary values for an entire system is likely to 
lead to a collapse of the enterprise under sheer weight of numbers. If a 
‘selective’ approach is adopted how does this improve on simple 
functional testing? This type of testing is best left to the 
module/integration testing stages.

Equivalence class and 
input partition testing 
(HR at SILs 2-3)

Same as above

Process simulation (R at 
all SILs)

Similar comments as for prototyping/animation as above. Simulation is 
not a testing technique; it should not be included in this table.



27

Table B.3 ‘Functional and Black-box Testing’Table B.3 ‘Functional and Black-box Testing’

Technique Comment
Test case execution from 
cause-consequence 
diagrams (R at SILs 3-4)

Applicability depends on the  prior production of cause-consequence 
diagrams. It is not evident that this is a recognised technique in modern 
terms, though an equivalent might be sought in UML terminology.

Prototyping/animation (R 
at SILs 3-4)

These techniques see more related to a validation activity than 
verification/testing.

Boundary-value analysis 
(HR at SILs 2-4)

It is questionable whether this approach  to generating test inputs is a 
practical proposition at system test level. The combinatorial effect of 
generating all possible boundary values for an entire system is likely to 
lead to a collapse of the enterprise under sheer weight of numbers. If a 
‘selective’ approach is adopted how does this improve on simple 
functional testing? This type of testing is best left to the 
module/integration testing stages.

Equivalence class and 
input partition testing 
(HR at SILs 2-3)

Same as above

Process simulation (R at 
all SILs)

Similar comments as for prototyping/animation as above. Simulation is 
not a testing technique; it should not be included in this table.



28

Table B.6 ‘Performance Testing’Table B.6 ‘Performance Testing’

Technique Comment
Avalanche/stress testing 
(HR at SILs 3-4)

Stress testing is a valid and useful technique provided that some 
performance indicators are laid down in advance

Response timings and 
memory constraints (HR 
at all SILs)

These are valid and useful techniques but why have they been combined 
in one entry? They should arguably be treated as separate requirements

Performance 
requirements (HR at all 
SILs)

This is a valid and necessary part of system testing but as with stress 
testing it does require that performance indicators be defined in advance



29

Table B.6 ‘Performance Testing’Table B.6 ‘Performance Testing’

Technique Comment
Avalanche/stress testing 
(HR at SILs 3-4)

Stress testing is a valid and useful technique provided that some 
performance indicators are laid down in advance

Response timings and 
memory constraints (HR 
at all SILs)

These are valid and useful techniques but why have they been combined 
in one entry? They should arguably be treated as separate requirements

Performance 
requirements (HR at all 
SILs)

This is a valid and necessary part of system testing but as with stress 
testing it does require that performance indicators be defined in advance



30

Missing from 
IEC 61508?



31

Add to Testing aspects of IEC 61508?

The most obvious deficiency (in the authors’ 
opinion) is the lack of defined test coverage 
levels (by SIL).
• Test coverage defines ‘how much’ testing is to be 

done. This in turn what confidence we can place in the 
reliable/safety of the code tested.

Defined coverage levels are an aspect of most 
other safety-related software standards, so why 
not IEC 61508?



32

A Suggestion…

From the RTCA DO-178B standard we might adopt the 
following for measurement of structural coverage:

Coverage Type SIL 1 SIL 2 SIL 3 SIL 4

100% Entry points HR HR HR HR

100% Statements R HR HR HR

100% Decisions R R HR HR

100% MC/DC R R R HR



33

MC/DC?

MC/DC – Modified Condition/Decision Coverage
• Condition/Decision Coverage (C/DC) requires ALL 

combinations of multiple conditions in a decision to be 
exercised

• Example: (A and B and C) would require 8 test cases
The ‘modified’ form of C/DC is a reduced form, 
which claims to achieve the same value but with 
less effort
• Example: (A and B and C) would require 4 test cases

See Chilenski and Miller, 1994



34

IEC 61508 and Software Testing 

Thank you for listening 

Any questions?

ian.gilchrist@ipl.com


	Software Testing and  IEC 61508 – �Project case study and further thoughts
	Topics
	Introduction�to the NASS project
	UK Motorway Systems
	NASS History
	NASS and IEC 61508 SIL
	NASS Software Design
	NASS�Testing�Strategy �
	NASS Testing Strategy
	NASS Testing Strategy
	NASS Module Testing
	NASS Software Integration Testing�
	NASS System Testing
	NASS Testing – all levels
	NASS�Testing
	NASS Project Conclusions
	NASS Project Conclusions
	Reflections on IEC  61508 and Testing Requirements
	IEC 61508 and Testing
	IEC 61508/3 and Testing
	Integration Testing
	Table A.5 ‘Software Module Testing and Integration’
	Table A.5 ‘Software Module Testing and Integration’
	Table B.2 ‘Dynamic Analysis and Testing’
	Table B.2 ‘Dynamic Analysis and Testing’
	Table B.3 ‘Functional and Black-box Testing’
	Table B.3 ‘Functional and Black-box Testing’
	Table B.6 ‘Performance Testing’
	Table B.6 ‘Performance Testing’
	Missing from IEC 61508?
	Add to Testing aspects of IEC 61508?
	A Suggestion…
	MC/DC?	
	IEC 61508 and Software Testing ��Thank you for listening��Any questions?���

