
Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 1

“Testing” Software
Before Implementation Starts

Guy H. Broadfoot
Guy.broadfoot@verum.com

The previous speaker talked about testing software after it has been
implemented; I want to talk about how we can test software before it is
implemented and before we have spent any money on programming or
test specification. In most product sectors, the amount and complexity of
in-product software is increasing exponentially – roughly in following
Moore’s law. This is challenging existing software engineering methods
and processes, especially the testing phases. In addition to this increase,
the nature of the systems we are called upon to develop is changing.
Almost every system we make today is event driven, reactive and involves
some degree of distributed processing and concurrency. This has an
important consequence:

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 2

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

Testing is necessary but insufficientTesting is necessary but insufficient

Modern software designs are increasingly Modern software designs are increasingly
asynchronous, concurrent, reactive and event drivenasynchronous, concurrent, reactive and event driven

Complexity, Deadlocks, Races, NondeterminismComplexity, Deadlocks, Races, Nondeterminism
Nondeterministic systems are untestableNondeterministic systems are untestable

Testing is an exercise in samplingTesting is an exercise in sampling
Sample is small, population is very largeSample is small, population is very large

Software specifications and designs are not verified Software specifications and designs are not verified
before implementationbefore implementation

Testing software means testing specification, design and Testing software means testing specification, design and
implementation at the same timeimplementation at the same time

Testing is the most expensive, least certain way to Testing is the most expensive, least certain way to
detect and remove defects and has maximum impact detect and remove defects and has maximum impact
on T2Mon T2M

Testing is necessary but not sufficient. Note: this is not an argument to do less testing; it
is an argument for doing something else, in addition to testing, so that software enters
testing with a higher quality than is usually the case. Why is testing alone not able to
meet the modern software development challenge? Modern software designs are
increasingly asynchronous and concurrent. Such systems are, by definition,
nondeterministic, increasingly complex and introduce the potential for design errors such
as deadlocks, divergence and race conditions. These are among the most difficult errors
to detect and remove by testing. It is axiomatic that nondeterministic systems are
untestable. There is no economically feasible amount of testing that can give us any
meaningful measures of correctness and freedom from errors. Such designs are not
restricted to a few niche domains; many embedded / in-product systems are designed
this way. For example, the GSM protocol stack on your mobile phone; the software in
your digital TV; the software controlling a wafer stepper, component mounter, electron
microscope and a body scanner are designed this way. As are the many systems in
cars, the most complex distributed platform in mass production! All of these software
systems have something in common; they are an essential part of some core product
and are Business Critical to the companies that make them.

All testing is an exercise in sampling, but in testing software systems, the sample size is
very small compared to the population size. Consider a simple software module with an
alphabet of 20 stimuli and a maximum sequence length of 10 (that is, the longest
sequence of input stimuli that results in unique behaviour). There are in the order of
1.08E13 potential execution scenarios. Now imagine two different components of this
complexity executing concurrently and communicating on a shared an alphabet of 10
events. How many potential execution scenarios are there? Now imagine compositions
of 20 such processes, or a 100 or more. How can conventional, informal design
methods address such complexity? What does testing coverage mean in this context?

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 3

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

Engineering and MathematicsEngineering and Mathematics

Every branch of Engineering uses Mathematics for Every branch of Engineering uses Mathematics for
Specification, Design and VerificationSpecification, Design and Verification

Mechanical Engineering => Differential EquationsMechanical Engineering => Differential Equations
Structural Engineering => Finite Element AnalysisStructural Engineering => Finite Element Analysis
Circuit Design => Boolean AlgebraCircuit Design => Boolean Algebra

Except Software EngineeringExcept Software Engineering
Most Software is specified and designed without using Most Software is specified and designed without using
mathematicsmathematics
Software specifications and designs cannot be verified Software specifications and designs cannot be verified
before implementationbefore implementation
Software testing must find specification, design and Software testing must find specification, design and
implementation errorsimplementation errors

This is what distinguishes software engineering from other branches of
engineering – the routine application of mathematics during specification
and design to eliminate errors before implementation.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 4

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

Existing ProcessExisting Process

Requirements
Analysis

Informal
Requirements
Specification

Integration
Testing

Tested
Components

Implementation Defect Feedback Loop

Specification & Design Defect Feedback Loop

Process and Data Flow

Manually
Implement

Components

Manually
Implement

Components

Source
Program Code

Specify & Design
Architecture

Informal
Architecture
Specification

Specify & Design
Components

Specify & Design
Components

Informal Component
Specifications & Designs

Component
Test Cases

Component Testing

I have explained the background to ASD – the fact that software complexity is increasing,
product liability issues arising from increased software use in consumer products, T2M
pressures and the need to improve development predictability. I mentioned that software
engineering, unlike all other branches of engineering, does not routinely apply the
mathematics that enable specifications and designs to be verified before implementation.
This means that when software is tested, not only are we testing the implementation and
looking for implementation defects, it is the first moment in which we are able to
concretely test the architecture, design and specifications. This occurs late in the life
cycle.

This slide illustrates the typical sequence of phases that must be accomplished to
develop software. It is not intended to represent any specific development process; it
merely serves to illustrate that the work occurs in a certain natural order. The dotted
lines represent the feedback that occurs as each phase finds defects in previous phases.
We expect this to an extent; each phase is a refinement of the work done in previous
phases. The problem arises because current development methods generally do not
provide any formal means of verifying architectures and designs against function
specifications before we spend the money implementing the software. We have informal
methods, such as design reviews and inspections and these make a substantial
contribution. But at best, they are only partial; they are reviews of static descriptions of
the system presented in informal specifications, which lack precision and any formal
means of establishing completeness or consistency. As a result, when testing starts,
errors are found in specifications, architectures and designs, resulting in expensive
rework and delays in completion.

What ASD aims to do is this:

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 5

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

Target ProcessTarget Process

Requirements
Analysis

Informal
Requirements
Specification

Integration
Testing

Tested
Components

Implementation Defect Feedback Loop

Specification & Design Defect Feedback Loop

Process and Data Flow

Manually
Implement

Components

Manually
Implement

Components

Source
Program Code

Specify & Design
Architecture

Informal
Architecture
Specification

Specify & Design
Components

Specify & Design
Components

Informal Component
Specifications & Designs

Component
Test Cases

Component Testing

It leads to breaking the feedback loop into two parts: the yellow part removes
specification and design errors before spending money on implementation and does so
using mathematically based proof techniques. This means that the implementation is
based on designs known to be correct and the red feedback loop is only about
implementation errors – programming mistakes if you will. We do not use testing to find
design errors, only programming errors.

How do we do this? By applying software engineering mathematics.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 6

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

Design

Functional
Requirements

Code

Analytical Software DesignAnalytical Software Design™™

BB:S* → R
Functional Specification

Inspection

For new software, either for new systems or for new parts of existing systems, we
start with a conventional “informal” specification in the form of the work products
already produced by our Customer’s existing development process. Step 1 is to
make an ASD specification using Sequence-based Specification techniques
(SBS) to produce a so-called Back Box Function (BB) specifying the required
functional behaviour. This is a total mathematical function mapping all possible
sequences of input stimuli (events, messages method calls etc.) onto the
specified system response. We do this together with Customer domain /
technical experts. The goal here is precision, not detail as such.

For reengineering existing software components either because of required
changes or because conventional testing based approaches have been unable to
solve stability or reliability problems, we may also reverse engineer the
specifications from the existing code base, again with the involvement as needed
from those familiar with the code.

When we have completed the ASD specification, we must establish 1) that it
matches the original specification 2) that the design fully implements it and 3) that
the code fully implements the design.

The first we do by inspection. This is possible because although the ASD
specifications are based on mathematical principles, they do not use difficult
mathematical notations. They are easily accessible to stakeholders and fully
traceable to the original specifications. The other questions are answered next –
starting with the design.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 7

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

BB:S*→R
Design

Functional
Requirements

Code

Analytical Software DesignAnalytical Software Design™™

BB:S* → R
Functional Specification

Inspection

We make the design following generally accepted, conventional
approaches, the big differences being 1) the emphasis we place on
precision and 2) the way in which we document the design. Function
behaviour is captured using SBS in the form of a design BB. Again, the
ASD specifications allow full participation of other engineers because they
do not rely on much visible mathematics. Most software engineers learn
this technique quite quickly and like it.

If we are reengineering and existing component, then during the design we
may reverse engineer much of the design from the existing code.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 8

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

BB:S*→R
Design

Functional
Requirements

Code

Analytical Software DesignAnalytical Software Design™™

BB:S* → R
Functional Specification

Inspection

?

Having done this, we have a “proof” obligation to discharge; namely
verifying the BB function of the design against the BB we made from the
requirements. How do we know the design implements everything in the
requirements and nothing else? How do we know it will behave according
to its functional requirements?

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 9

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

BB:S*→R
Design

Functional
Requirements

?

Code

BB:S* → R
Functional Specification

CSP
Black Box

CSP
Specification

⊑F

Model Checking

Does the Black
Box design

refine the Black
Box specification

✓

Analytical Software DesignAnalytical Software Design™™

Inspection

We translate the BB specifications of the requirements and the design
automatically to CSP models and we usea tool called a model checker to
establish that the BB design exactly complies with it. The way we apply
SBS to specifications enables nondeterminism to be captured properly,
essential when describing externally visible behaviour. CSP algebra also
captures nondeterminism and the refinement principles used in CSP are
able to compare deterministic design models mathematically to
nondeterministic specification models. The mathematical verification we
use in this case is called Failures Refinement. With this, we can verify
whether or not the design (i) specifies all required behaviour in the correct
way; (ii) does not specify any behaviour not specified in the specification
and (iii) if optional behaviour is specified in the design, it is designed
according to the specification. These are not inspections or tests; these
are mathematical proofs so they hold for all possible execution scenarios.
We could never establish this by testing.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 10

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

BB:S*→R
Design

Functional
Requirements

?

Code

BB:S* → R
Functional Specification

CSP
Black Box

CSP
Specification

⊑F

Model Checking

Analytical Software DesignAnalytical Software Design™™

Inspection

✓ Does the design
work with the

other components
it uses?

But of course, in reality, we cannot establish that a design behaves
correctly without considering how it interacts with the other components it
uses. Indeed, the way in which the design will interact with other
components, HW or SW, is a key part of establishing that the design is
correct. Particularly in event driven, reactive systems with concurrent
behaviour, this cannot be done by inspecting static design specifications
individually. We need some way of exploring the dynamic behaviour of the
design as it will behave together with its runtime environment when it
executes. And of course, we wish to do this before we implement our
designs in code. How do we do this?

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 11

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

BB:S*→R
Design

Functional
Requirements

?

Code

BB:S* → R
Functional Specification

CSP
Black Box

CSP
Specification

⊑F

CSP
Black Box

|| BB:S* → R
Functional Specification

Used
Component
InterfacesModel Checking

✓

Analytical Software DesignAnalytical Software Design™™

Inspection

Inspection

We apply SBS to analyse the externally visible behaviour of these other
components and make BB function specifications of them. This is a
valuable exercise in itself; it leads to a more complete and deeper
understanding of the behaviour of these other components; it focuses on
interface behaviour and frequently raises important questions not clearly
addressed in the conventional interface specifications. It looks like new
work, but it is not; we have to do this analysis and understanding anyway
in order to successfully program against these interfaces even in a
conventional development process. The new work is just capturing this
knowledge as a BB function and we get a huge payoff for this little extra
effort. We verify this work by inspection and discussion with “experts”.

When implementing new software components that are to be a part of an
existing legacy system, it is frequently the case that the current
implementation of the legacy software no longer behaves according to the
existing specifications. In these situations, the ASD specifications will be
made with frequent reference to the existing legacy code base,
“recovering” the current specifications from the existing implementation.

Having done this, we generate the CSP models of these interfaces and
check our design together with these interface models.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 12

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

BSDM
BB:S*→R

Design

Functional
Requirements

?

Generated
Code

CSP
Black Box

CSP
Specification

⊑F

CSP
Black Box

||

Used
Component
InterfacesModel Checking

Hand-written
Code + + Generated

Test Cases

Inspection

✓

✓
BB:S* → R

Functional Specification

BB:S* → R
Functional Specification

Analytical Software DesignAnalytical Software Design™™

Inspection

At this point, we have a design which is verified against the functional
requirements. We now have to implement this and verify the
implementation against the design. The BB specification of the design is
not a good programming specification – it uses abstractions such as
infinite sequences of abstract events that are difficult to represent in most
programming languages. The “abstraction” step is too big to expect a
programmer to move directly from the BB specification to code. These
abstractions have to be made more concrete before we can program
them. This is done using the Box Structured Development Method
(BSDM). This gives us a mathematically sound way to transform the BB
into a State Box (SB) in which all these difficult abstractions are replaced
by state data and state data update rules. We can program directly from
this and we can check the code against this by inspection.

But first, we must establish that we made no mistakes and the SB exactly
refines the BB.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 13

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

BSDM
BB:S*→R

Design

Functional
Requirements

?

?

Generated
Code

SB:(T,S)→(T’,R)
Design

CSP
Black Box

CSP
State Box

≡T

CSP
Specification

⊑F

CSP
Black Box

||

Used
Component
InterfacesModel Checking

Hand-written
Code + +

Inspection

Generated
Test Cases

Inspection

✓

✓
BB:S* → R

Functional Specification

BB:S* → R
Functional Specification

Analytical Software DesignAnalytical Software Design™™

Inspection

This we do by automatically generating the corresponding CSP model of the SB and
using a mathematical refinement called traces refinement to establish that the SB
describes exactly the same behaviour as the BB. This is checked using the model
checker.

We address the issue of programming compliance with the design in three ways:

1. Some code (it depends on each project as to how much) can be generated
automatically and we do not need to check this at all;

2. Some code still has to be hand written and checking this against verified designs in
the form of SB specifications is straight forward using inspection;

3. We can generate large numbers of test cases in the form of self running test
programs, execute the tests and analyse the results automatically. This testing is based
on statistical concepts and is very cost efficient and effective.

By applying these techniques in this manner, components should enter integration
testing with far fewer defects than is usual. Also, because we are able to analyse
dyanmic behaviour between components before investing in programming, there should
be far fewer difficult integration defects to detect and remove.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 14

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

Why does this scale?Why does this scale?

CSP is compositionalCSP is compositional

Design models are verified against interface modelsDesign models are verified against interface models

We donWe don’’t need designs for everything to validate the t need designs for everything to validate the
designs for some thingsdesigns for some things

We donWe don’’t model check all the designs togethert model check all the designs together

How can we be sure that this scales to industrial sized projects?
Scalability, or the lack thereof, is one of the traditional arguments against
this approach.

CSP is compositional; all CSP operators are monotonic with respect to
refinement and refinement is transitive. This is what allows us to check
designs against interface models and means we do not have to model all
designs together at once. Indeed, when using third-party components, we
may never have the designs available to us. Any safety or liveness
properties we can describe in terms of refinement can be performed in this
compositional way. This is very important; not all process algebras and
modelling checking techniques can verify liveness properties in this
compositional manner.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 15

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

ASD EffectASD Effect

Requirements
Analysis

Informal
Requirements
Specification

Integration
Testing

Tested
Components

Implementation Defect Feedback Loop

Specification & Design Defect Feedback Loop

Process and Data Flow

Manually
Implement

Components

Manually
Implement

Components

Source
Program Code

Specify & Design
Architecture

Informal
Architecture
Specification

Specify & Design
Components

Specify & Design
Components

Informal Component
Specifications & Designs

Component
Test Cases

Component Testing

The big advantage of ASD is that it enables us to break the feedback
loops we spoke about in the beginning into two separate cycles. What you
saw in the demo was how these feedbacks loops can be separated and
what the effect of doing this can be. We detected and removed several
difficult classes of errors before investing in programming. Not only this,
but the types of defects we detected are the very types most difficult to find
by testing the implementation because they are very hard to reproduce.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 16

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

ASDASD™™ AdvantagesAdvantages

Able to verify automatically that functional specifications Able to verify automatically that functional specifications
comply with safety cases comply with safety cases before design and implementationbefore design and implementation
Able to verify automatically that designs meet functional Able to verify automatically that designs meet functional
specification specification before implementationbefore implementation
Able to analyse behaviour between components for Able to analyse behaviour between components for
deadlocks, race conditions, nondeterminism, divergence and deadlocks, race conditions, nondeterminism, divergence and
correctness correctness before implementationbefore implementation
CSP models are generated automatically from ASD CSP models are generated automatically from ASD
specifications specifications -- EconomicEconomic

no need to verify models against specificationsno need to verify models against specifications
CSP model traceability is not an issueCSP model traceability is not an issue
queue models generated automaticallyqueue models generated automatically

Compatible with existing development environments Compatible with existing development environments --
mathematical expertise less importantmathematical expertise less important
Stakeholders understand the specificationsStakeholders understand the specifications

This gives us a number of important advantages.
(i) We can verify specifications and designs before we invest in

implementation. This is both cheaper and more certain than testing; it
is also much quicker.

(ii) We can analyse the dynamic behaviour of designs before
implementation; including behaviour between components as well as
within individual components. Because models are generated
automatically, we don’t need to verify models against specifications
and we have no traceability issues.

(iii) In safety critical areas, we can work with domain safety engineers to
analyse safety cases and formulate them as safety specifications to be
verified by refinement. This means we can verify designs
mathematically and ensure that such safety case hold. Again, this is
not inspection or testing, but mathematical proof, providing a degree of
certainty not achievable any other way.

(iv) Most importantly, ASD can be added to existing project teams in
existing environments with minimum disruption and stakeholders retain
control over specifications because they can understand and verify
ASD specifications.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 17

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

ASD BenefitsASD Benefits

Software enters testing with 90% fewer defectsSoftware enters testing with 90% fewer defects
Conventional testing more effectiveConventional testing more effective
Testing can concentrate on aspects we cannot verify Testing can concentrate on aspects we cannot verify
mathematically and complement the development processmathematically and complement the development process
Fewer defects reach end usersFewer defects reach end users
Actual and perceived quality much higherActual and perceived quality much higher

Development costs reduced by 30% or moreDevelopment costs reduced by 30% or more
Less ReworkLess Rework
Removal of many defects early in the lifecycle means much less Removal of many defects early in the lifecycle means much less
unpredictable corrective rework later.unpredictable corrective rework later.

Development time reduced by 30% or moreDevelopment time reduced by 30% or more
Shorter TimeShorter Time--toto--MarketMarket
Fewer defects means shorter testing cycles & less reworkFewer defects means shorter testing cycles & less rework

Improved PredictabilityImproved Predictability
In terms of cost, time to market and qualityIn terms of cost, time to market and quality

This is the connection to the “bottom line” business goals of the organisation. This is our
experience and that of our Customers based on the projects we have completed so far.
Software development by ASD is cheaper, quicker and results in fewer defects reaching
end users.

All of this translates to bottom line profit increase and competitive advantage.

Because software enters testing with far fewer specification and design errors, testing
can concentrate on detecting construction errors and those defects that we cannot easily
verify mathematically.

Because we have eliminated the difficult, nondeterministic design errors such as
deadlocks and race conditions before construction, the errors that remain will be more
easily reproducible, quicker to detect by testing and quicker and cheaper to repair.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 18

Copyright (c) 2004 - 2006 Verum Consultants
BV

Clients

These are some of our customers. What follows are two case examples.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 19

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

MagLevMagLev Results (1)Results (1)

Code StatisticsCode Statistics
Automatically generated C++ Automatically generated C++ eLocseLocs = 18,000= 18,000
HandHand--written C++ written C++ eLocseLocs = 3,000= 3,000

Defects Detected before DeliveryDefects Detected before Delivery
Total defectsTotal defects = 5= 5
Defects per 1,000Defects per 1,000-- eLocseLocs = 0.26= 0.26

Defects Detected After DeliveryDefects Detected After Delivery
Total defectsTotal defects = 2= 2
Defects per 1,000Defects per 1,000-- eLocseLocs = 0.11= 0.11

ProductivityProductivity
C++ C++ eLocseLocs per man hourper man hour = 12.9= 12.9
Effort in man hoursEffort in man hours = 1,400= 1,400

In this project, a joint project team from Verum and Philips Applied
Technologies (Mechatronics) developed the control software for a new
“stage”.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 20

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

MagLevMagLev Results (2)Results (2)

Comparable Client ProjectComparable Client Project [ASD][ASD]

eLocseLocs per man hourper man hour = 3.75= 3.75 [12.9][12.9]

Defects before deliveryDefects before delivery

Total discoveredTotal discovered = 60= 60 [5][5]

Defects per 1,000 Defects per 1,000 eLocseLocs = 3.12= 3.12 [0.26][0.26]

Defects after deliveryDefects after delivery

Total discoveredTotal discovered = 86= 86 [2][2]

Defects per 1,000 Defects per 1,000 eLocseLocs = 4.48= 4.48 [0.11][0.11]

This is the comparison between the project performance and a
comparable project selected by Philips Applied Technologies.

Analytical Software Design ASD 2006/06/08

Copyright 2004 - 2006 Verum Consultants BV 21

Copyright (c) 2004 Copyright (c) 2004 -- 2006 Verum Consultants 2006 Verum Consultants
BVBV

ResultsResults
Comparative Defect Detection Point Comparative Defect Detection Point

Number of Defects found over Lifecycle

0

2

4

6

8

10

12

14

16

18

20

Requirement s Archit ecture Design Implement at ion Unit Test Int egrat ion Test Syst em Test Maintenance

Defects Detected w ith Design Verif ication
Defects Detected (Typical)

In this project, the goal was to verify a new software design being made by
the customer’s design team. After the project, the customer carried out an
evaluation to answer the following question: assuming all the errors found
by Verum would also have been found by the customer’s own
development process, where in the life-cycle would these faults have been
found? This graphic shows the results of their analysis. Verum found all
the faults during the design phase, before implementation. The customer
would have founf some during that phase, a few more during
implementation but most would have been found during system testing – a
lengthy and expensive part of the life-cycle. Significantly, some major
errors would not have been detected until after the product was delivered
to the end users.

