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Introduction

Increase in complexity, and quest for higher quality software
♦ testing effort grows exponentially with complexity

♦ testing cannot keep pace with development

More abstraction
♦ less detail

♦ model based development; OMG’s UML, MDA

Checking quality
♦ practice:   testing - ad hoc, too late, expensive, lot of time

♦ research:  formal verification - proofs, model checking,  . . . . 
with disappointing practical impact

Software bugs / errors cost US economy yearly:
$ 59.500.000.000 (~ € 50 billion) (www.nist.gov)

$ 22 billion could be eliminated…
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Model-Based Testing

Model based testing has potential to combine
♦ practice - testing

♦ theory - formal methods

Model Based Testing :
♦ testing with respect to a (formal) model / specification

state model, pre/post, CSP, Promela, UML, Spec#,  . . . . 

♦ promises better, faster, cheaper testing:

• algorithmic generation of tests and test oracles :  tools

• formal and unambiguous basis for testing

• measuring the completeness of tests

• maintenance of tests through model modification
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Automated Model-Based TestingModel-BasedAutomated Testing

model

IUT

IUT
confto
model

TTCNTTCNtest
cases

pass fail

test
tool

test
generation

tool

test
execution

tool
IUT passes tests

IUT confto model

⇔⇑ ⇓ soundexhaustive

IUT = implementation under test

6

LaQuSo
A Model-Based Development Process
informal

requirements

specification

realization

design

code

formalizable
validation

formal
verification

testing

model-
based

informal world

world of models

real world
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Testing functional behaviour
of black-box implementation
with respect to a model
in a well-defined language 
based on a formal definition
of correctness

Model-Based Testing
Formal Specification-Based Functional Testing

implementation
under test

IUT

model-based testing

specification/model is basis for testing

model
s

world of models

real world
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Approaches to Model-Based Testing

Several modeling paradigms:

Finite State Machine

Pre/post-conditions

Labelled Transition Systems

Programs as Functions

Abstract Data Type testing

. . . . . . .

Labelled Transition Systems
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Model Based Testing

s ∈ LTS

i ∈ IOTS

i ioco s

pass fail

test
tool

gen : LTS
→ ℘(TTS)

t || i

i || der(s) → pass

i ioco s

⇑ ⇓ soundexhaustive

pass fail

model

IUT

IUT
confto
model

test
tool

test
generation

tool

test
execution

tool
IUT passes tests

IUT confto model

⇑ ⇓ soundexhaustive

with Transition Systems
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Process of Model-Based Testing

test 
execution

test
generation

tests

model

IUT

confto

Involves:
• models
• correctness
• implementation IUT
• test generation
• test execution
• test result analysis

pass / fail



6

11

LaQuSo

Models

Labelled Transition System: 〈 S, L, T, s0 〉

?coin

?button

!alarm ?button

!coffee

states

actions transitions
T ⊆ S × (L∪{τ}) × S

initial state
s0 ∈ S
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?dub
?kwart

?kwart

?dub
?kwart

?dub
?kwart

?kwart
?dub

?dub
?kwart

?kwart
?dub

?kwart

?kwart
?dub

?dub
?kwart

?dub
?kwart

Models
Input-Enabled Transition Systems

!choc  

?dub

!tea!coffee

?dub

?dub

!choc 

?kwart

!tea
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i ioco s =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

Correctness
Implementation Relation ioco

p δ p =   ∀ !x ∈ LU ∪{τ} .   p !x 

out ( P ) =  { !x ∈ LU | p !x ,  p∈P }  ∪ { δ | p δ p,  p∈P }

Straces ( s ) =   {  σ ∈ (L∪{δ})*  |  s σ }

p after σ =   {  p’ |   p σ p’ }
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i ioco s =def ∀σ ∈ Straces (s) :  out (i after σ)  ⊆ out (s after σ) 

Intuition:

i ioco-conforms to s, iff

• if  i produces output  x after trace  σ,
then  s can produce  x after  σ

• if  i cannot produce any output after trace  σ,
then  s cannot produce any output after  σ ( quiescence δ )

Correctness
Implementation Relation ioco
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?dub

!choc 

?kwart

!tea

!coffee

?dub
?kwart

?dub
?kwart

?dub
?kwart !choc  

?dub

!tea

ioco ioco

Implementation Relation  ioco

!coffee

?dub

!tea

s

ioco
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Test Cases

♦ ‘quiescence’ label θ
♦ tree-structured
♦ finite, deterministic
♦ final states pass and fail
♦ from each state  ≠ pass, fail :

• either one input  !a
• or all outputs ?x and θ

?coffee

!dub

!kwart

?tea

?coffee?tea

θ

!dub

θ

pass

failfail

failpass

Model of test case
=  transition system :
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Algorithm

To generate a test case from transition system specification s0
compute T(S), with S a set of states, and initially S = s0 after ε ;

1 end test case
pass

For T(S), apply the following recursively, non-deterministically:

2 supply input

!a

T( S after ?a ≠ ∅ )

ioco Test Generation Algorithm

allowed outputs or δ:       !x ∈out (S)
forbidden outputs or δ:   !y ∉out (S)

3 observe output

fail

T ( S after !x )

fail

allowed outputsforbidden outputs
?y

θ ?x
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?coffee θ
?tea

passfail fail

?coffee

passfail

θ
?tea

δ

δ

δ

Example:  Test Generation

s
?dub

!coffee

?dub
test

!dub
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Example:  Test Execution

Two test runs :

t ⎤⎥ i dub  θ pass ⎤⎥ i'

pass ⎤⎥ i't ⎤⎥ i dub  coffee  θ
i passes t

?coffee θ
?tea

passfail fail

?coffee

passfail

θ
?tea

test
!dub

i
?dub

!coffee

?dub

?dub

?dub

?dub
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Test Result Analysis

Completeness of ioco Test Generation

For every test  t generated with algorithm we have:

Soundness :
t will never fail with correct implementation

i ioco s implies        i passes t

Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ioco s implies       ∃ t :  i fails t
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Tooling

AETG
Agatha
Agedis
Autolink
Cooper
G∀st
Gotcha
Leirios
Phact/The Kit
QuickCheck
RT-Tester
SaMsTaG

Spec#/SpecExplorer
Statemate MAGNUM ATG
STG
TestGen (Stirling)
TestGen (INT)
TestComposer
TGV
TorX
T-Uppaal
Tveda
. . . . . .

TorX

Some Model Based Testing Approaches and Tools
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A Tool for Transition Systems 

Testing:  TorX
On-the-fly test generation and test execution
Implementation relation:  ioco
Mainly applicable to reactive systems / state based systems;
♦ specification languages:   LOTOS,  Promela,  FSP,  Automata

TorX IUT
observe
output

offer
input

next
input

specification
check
output

pass
fail
inconclusive

user:
manual
automatic
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explorer primer driver adapter IUTIUTIUT
bits

bytes

states

transitions

abstract

actionstransition

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x

On-the-Fly Testing

spec.
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TorX
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Interpay ‘’Rekeningrijden’’

Payment Box Protocol



14

27

LaQuSo

“Rekeningrijden”

Characteristics :

Simple protocol

Parallellism :
♦ many cars at the same time

Encryption

Real-time issues

System passed traditional testing phase
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Payment
Box

(PB)Road Side
Equipment

Onboard
Unit

UDP/IPWireless

‘’Rekeningrijden’’
Highway Tolling System
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spec

PB

TorX Payment
Box

‘’Rekeningrijden’’: Test Architecture

PCO
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spec

PB
+

ObuSim
+

TCP/IP
+

UDP/IP

Payment
Box

TorX

‘’Rekeningrijden’’: Test Architecture

SUT

Test Context

ObuSim

TCP/IP UDP/IP IAPPCO
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‘’Rekeningrijden” : Results

Test environment :  set-up challenging

Parallellism :   easy to test for many cars in parallel

Test results :

♦ 1 error during validation   (design error)

♦ 1 error during testing   (coding error)

Automated testing :

♦ beneficial:  high volume and reliability

♦ many and long tests executed   ( > 50,000 test events )

♦ very flexible:  adaptation and many configurations

Step ahead in model-based testing
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Applicability of MBT

Model Based Testing is advocated for longer time
♦ Paper Apfelbaum and Doyle, 1997
♦ Keynote Robinson (Google) at EuroStar 2005

Applied by companies like Cisco, IBM, Google and MicroSoft
So, how is your Model Based Testing today?
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MBT application @ Bellcore
MBT approach applied on large projects (Dalal et al, 1999)
Modeling notation: AETGSpec (test data model )
Domain: Telecom; several applications:

Experiences:
♦ Discovery of failures that otherwise (with manual testing) not have 

been detected before reaching customer
♦ Demand for development skills from testers
♦ Reengineering test process

62%159User interface

423%13*Rule based system

275%4500Messaging

4313%1601Arithmetic functions

Failure 
classes

Failed test 
cases

Total test cases
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MBT application @ MicroSoft

MBT tool: SpecExplorer (Campbell et al, 2005)
♦ Successor of Abstract State Machines (ASML)

Modeling language: Spec#
Domain: MS-software
♦ E.g., driver software; parallel processes (reactive behavior, dynamic object 

creation, non-determinism) 
Experiences:
♦ Models help discover more bugs during modeling than testing
♦ During testing, models help discover deep system level bugs
♦ New sw-functions require small changes compared to manual testing 
♦ Tooling; importance of built-in test-harness 
♦ User feedback showed that improvements were necessary (Scenario 

control, Model composition, Continuing testing after failures)
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Factors that determine the 

applicability of MBT
Model
♦ Availability of (input for) models; link requirements to 

model
♦ Link UML (still lack of semantics) – MBT (formal)

Test harness that matches model
♦ SUT = Test harness + IUT

• SUT - system under test,
• IUT – implementation under test

Test selection heuristics
♦ Coverage

Organizational awareness
♦ Testing integrated with development 

IUT

Test harness

SUT
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When does MBT pay off?
Factors that change the curve

effort

time

Conventional
testing

Testing with MBT

Define 
models,
Engineer 
test process

More testing 
possible due to 
automated testing
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Conclusions

Model Based Testing:
When to apply?:
♦ Model available or can be derived; modeling is hard
♦ Applies to specification, design and realization/sw-implementation

How to apply? We showed for labelled transition systems:
♦ ioco for expressing conformance between imp and spec

♦ a sound and exhaustive test generation algorithm

♦ tools generating and executing tests:
TGV, TestGen, Agedis, TorX, . . . .
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More information

General info, contact info:
www.laquso.com
www.esi.nl

Specific MBT info:
http://www.cs.ru.nl/~tretmans
Torx: http://fmt.cs.utwente.nl/tools/torx/introduction.html


