
1

1

Jan Tretmans
j.tretmans@esi.nl

Embedded Systems Institute +
Radboud University Nijmegen

Teade Punter
t.punter@tue.nl

LaQuSo -
TU Eindhoven

LaQuSo
Laboratory for Quality Software

Model-Based Testing
TestNet thema-avond

8 juni 2006

2

LaQuSo
Agenda

Introduction to Model-based testing (MBT)
MBT Approach
Tooling
Case study
Applicability of MBT
Conclusions

2

3

LaQuSo

Introduction

Increase in complexity, and quest for higher quality software
♦ testing effort grows exponentially with complexity

♦ testing cannot keep pace with development

More abstraction
♦ less detail

♦ model based development; OMG’s UML, MDA

Checking quality
♦ practice: testing - ad hoc, too late, expensive, lot of time

♦ research: formal verification - proofs, model checking,
with disappointing practical impact

Software bugs / errors cost US economy yearly:
$ 59.500.000.000 (~ € 50 billion) (www.nist.gov)

$ 22 billion could be eliminated…

4

LaQuSo

Model-Based Testing

Model based testing has potential to combine
♦ practice - testing

♦ theory - formal methods

Model Based Testing :
♦ testing with respect to a (formal) model / specification

state model, pre/post, CSP, Promela, UML, Spec#,

♦ promises better, faster, cheaper testing:

• algorithmic generation of tests and test oracles : tools

• formal and unambiguous basis for testing

• measuring the completeness of tests

• maintenance of tests through model modification

3

5

LaQuSo

Automated Model-Based TestingModel-BasedAutomated Testing

model

IUT

IUT
confto
model

TTCNTTCNtest
cases

pass fail

test
tool

test
generation

tool

test
execution

tool
IUT passes tests

IUT confto model

⇔⇑ ⇓ soundexhaustive

IUT = implementation under test

6

LaQuSo
A Model-Based Development Process
informal

requirements

specification

realization

design

code

formalizable
validation

formal
verification

testing

model-
based

informal world

world of models

real world

4

7

LaQuSo

Testing functional behaviour
of black-box implementation
with respect to a model
in a well-defined language
based on a formal definition
of correctness

Model-Based Testing
Formal Specification-Based Functional Testing

implementation
under test

IUT

model-based testing

specification/model is basis for testing

model
s

world of models

real world

8

LaQuSo

Approaches to Model-Based Testing

Several modeling paradigms:

Finite State Machine

Pre/post-conditions

Labelled Transition Systems

Programs as Functions

Abstract Data Type testing

.

Labelled Transition Systems

5

9

LaQuSo
Model Based Testing

s ∈ LTS

i ∈ IOTS

i ioco s

pass fail

test
tool

gen : LTS
→ ℘(TTS)

t || i

i || der(s) → pass

i ioco s

⇑ ⇓ soundexhaustive

pass fail

model

IUT

IUT
confto
model

test
tool

test
generation

tool

test
execution

tool
IUT passes tests

IUT confto model

⇑ ⇓ soundexhaustive

with Transition Systems

10

LaQuSo
Process of Model-Based Testing

test
execution

test
generation

tests

model

IUT

confto

Involves:
• models
• correctness
• implementation IUT
• test generation
• test execution
• test result analysis

pass / fail

6

11

LaQuSo

Models

Labelled Transition System: 〈 S, L, T, s0 〉

?coin

?button

!alarm ?button

!coffee

states

actions transitions
T ⊆ S × (L∪{τ}) × S

initial state
s0 ∈ S

12

LaQuSo

?dub
?kwart

?kwart

?dub
?kwart

?dub
?kwart

?kwart
?dub

?dub
?kwart

?kwart
?dub

?kwart

?kwart
?dub

?dub
?kwart

?dub
?kwart

Models
Input-Enabled Transition Systems

!choc

?dub

!tea!coffee

?dub

?dub

!choc

?kwart

!tea

7

13

LaQuSo

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

Correctness
Implementation Relation ioco

p δ p = ∀ !x ∈ LU ∪{τ} . p !x

out (P) = { !x ∈ LU | p !x , p∈P } ∪ { δ | p δ p, p∈P }

Straces (s) = { σ ∈ (L∪{δ})* | s σ }

p after σ = { p’ | p σ p’ }

14

LaQuSo

i ioco s =def ∀σ ∈ Straces (s) : out (i after σ) ⊆ out (s after σ)

Intuition:

i ioco-conforms to s, iff

• if i produces output x after trace σ,
then s can produce x after σ

• if i cannot produce any output after trace σ,
then s cannot produce any output after σ (quiescence δ)

Correctness
Implementation Relation ioco

8

15

LaQuSo

?dub

!choc

?kwart

!tea

!coffee

?dub
?kwart

?dub
?kwart

?dub
?kwart !choc

?dub

!tea

ioco ioco

Implementation Relation ioco

!coffee

?dub

!tea

s

ioco

16

LaQuSo

Test Cases

♦ ‘quiescence’ label θ
♦ tree-structured
♦ finite, deterministic
♦ final states pass and fail
♦ from each state ≠ pass, fail :

• either one input !a
• or all outputs ?x and θ

?coffee

!dub

!kwart

?tea

?coffee?tea

θ

!dub

θ

pass

failfail

failpass

Model of test case
= transition system :

9

17

LaQuSo

Algorithm

To generate a test case from transition system specification s0
compute T(S), with S a set of states, and initially S = s0 after ε ;

1 end test case
pass

For T(S), apply the following recursively, non-deterministically:

2 supply input

!a

T(S after ?a ≠ ∅)

ioco Test Generation Algorithm

allowed outputs or δ: !x ∈out (S)
forbidden outputs or δ: !y ∉out (S)

3 observe output

fail

T (S after !x)

fail

allowed outputsforbidden outputs
?y

θ ?x

18

LaQuSo

?coffee θ
?tea

passfail fail

?coffee

passfail

θ
?tea

δ

δ

δ

Example: Test Generation

s
?dub

!coffee

?dub
test

!dub

10

19

LaQuSo

Example: Test Execution

Two test runs :

t ⎤⎥ i dub θ pass ⎤⎥ i'

pass ⎤⎥ i't ⎤⎥ i dub coffee θ
i passes t

?coffee θ
?tea

passfail fail

?coffee

passfail

θ
?tea

test
!dub

i
?dub

!coffee

?dub

?dub

?dub

?dub

20

LaQuSo
Test Result Analysis

Completeness of ioco Test Generation

For every test t generated with algorithm we have:

Soundness :
t will never fail with correct implementation

i ioco s implies i passes t

Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ioco s implies ∃ t : i fails t

11

21

LaQuSo

Agenda

Introduction to Model-based testing (MBT)
MBT Approach
Tooling
Case study
Applicability of MBT
Conclusions

22

LaQuSo

Tooling

AETG
Agatha
Agedis
Autolink
Cooper
G∀st
Gotcha
Leirios
Phact/The Kit
QuickCheck
RT-Tester
SaMsTaG

Spec#/SpecExplorer
Statemate MAGNUM ATG
STG
TestGen (Stirling)
TestGen (INT)
TestComposer
TGV
TorX
T-Uppaal
Tveda
.

TorX

Some Model Based Testing Approaches and Tools

12

23

LaQuSo
A Tool for Transition Systems

Testing: TorX
On-the-fly test generation and test execution
Implementation relation: ioco
Mainly applicable to reactive systems / state based systems;
♦ specification languages: LOTOS, Promela, FSP, Automata

TorX IUT
observe
output

offer
input

next
input

specification
check
output

pass
fail
inconclusive

user:
manual
automatic

24

LaQuSo

explorer primer driver adapter IUTIUTIUT
bits

bytes

states

transitions

abstract

actionstransition

? x (x >= 0)

! √x

? x (x < 0)

! -√x

specification implementation

? x (x >= 0)

! √x

? x (x < 0)

? x

On-the-Fly Testing

spec.

13

25

LaQuSo
TorX

26

LaQuSo
Interpay ‘’Rekeningrijden’’

Payment Box Protocol

14

27

LaQuSo

“Rekeningrijden”

Characteristics :

Simple protocol

Parallellism :
♦ many cars at the same time

Encryption

Real-time issues

System passed traditional testing phase

28

LaQuSo

Payment
Box

(PB)Road Side
Equipment

Onboard
Unit

UDP/IPWireless

‘’Rekeningrijden’’
Highway Tolling System

15

29

LaQuSo

spec

PB

TorX Payment
Box

‘’Rekeningrijden’’: Test Architecture

PCO

30

LaQuSo

spec

PB
+

ObuSim
+

TCP/IP
+

UDP/IP

Payment
Box

TorX

‘’Rekeningrijden’’: Test Architecture

SUT

Test Context

ObuSim

TCP/IP UDP/IP IAPPCO

16

31

LaQuSo
‘’Rekeningrijden” : Results

Test environment : set-up challenging

Parallellism : easy to test for many cars in parallel

Test results :

♦ 1 error during validation (design error)

♦ 1 error during testing (coding error)

Automated testing :

♦ beneficial: high volume and reliability

♦ many and long tests executed (> 50,000 test events)

♦ very flexible: adaptation and many configurations

Step ahead in model-based testing

32

LaQuSo

Agenda

Introduction to Model-based testing (MBT)
MBT Approach
Tooling
Case study
Applicability of MBT
Conclusions

17

33

LaQuSo

Applicability of MBT

Model Based Testing is advocated for longer time
♦ Paper Apfelbaum and Doyle, 1997
♦ Keynote Robinson (Google) at EuroStar 2005

Applied by companies like Cisco, IBM, Google and MicroSoft
So, how is your Model Based Testing today?

34

LaQuSo

MBT application @ Bellcore
MBT approach applied on large projects (Dalal et al, 1999)
Modeling notation: AETGSpec (test data model)
Domain: Telecom; several applications:

Experiences:
♦ Discovery of failures that otherwise (with manual testing) not have

been detected before reaching customer
♦ Demand for development skills from testers
♦ Reengineering test process

62%159User interface

423%13*Rule based system

275%4500Messaging

4313%1601Arithmetic functions

Failure
classes

Failed test
cases

Total test cases

18

35

LaQuSo

MBT application @ MicroSoft

MBT tool: SpecExplorer (Campbell et al, 2005)
♦ Successor of Abstract State Machines (ASML)

Modeling language: Spec#
Domain: MS-software
♦ E.g., driver software; parallel processes (reactive behavior, dynamic object

creation, non-determinism)
Experiences:
♦ Models help discover more bugs during modeling than testing
♦ During testing, models help discover deep system level bugs
♦ New sw-functions require small changes compared to manual testing
♦ Tooling; importance of built-in test-harness
♦ User feedback showed that improvements were necessary (Scenario

control, Model composition, Continuing testing after failures)

36

LaQuSo
Factors that determine the

applicability of MBT
Model
♦ Availability of (input for) models; link requirements to

model
♦ Link UML (still lack of semantics) – MBT (formal)

Test harness that matches model
♦ SUT = Test harness + IUT

• SUT - system under test,
• IUT – implementation under test

Test selection heuristics
♦ Coverage

Organizational awareness
♦ Testing integrated with development

IUT

Test harness

SUT

19

37

LaQuSo

When does MBT pay off?
Factors that change the curve

effort

time

Conventional
testing

Testing with MBT

Define
models,
Engineer
test process

More testing
possible due to
automated testing

38

LaQuSo

Conclusions

Model Based Testing:
When to apply?:
♦ Model available or can be derived; modeling is hard
♦ Applies to specification, design and realization/sw-implementation

How to apply? We showed for labelled transition systems:
♦ ioco for expressing conformance between imp and spec

♦ a sound and exhaustive test generation algorithm

♦ tools generating and executing tests:
TGV, TestGen, Agedis, TorX,

20

39

LaQuSo

More information

General info, contact info:
www.laquso.com
www.esi.nl

Specific MBT info:
http://www.cs.ru.nl/~tretmans
Torx: http://fmt.cs.utwente.nl/tools/torx/introduction.html

