La@USO Embedded Systemg

*Laboratory for Quality Software

*

Model-Based Testing

TestNet thema-avond
8 juni 2006

Teade Punter Jan Tretmans

t.punter@tue.nl j.tretmans@esi.nl
LaQuSo - Embedded Systems Institute +
TU Eindhoven Radboud University Nijmegen

Agenda

troduction to Model-based testing (MBT)
MBT Approach
Tooling
& Case study
" Applicability of MBT
& Conclusions

Introduction

~ Increase in complexity, and quest for higher quality software
¢ testing effort grows exponentially with complexity
¢ testing cannot keep pace with development

“ More abstraction
¢ less detail

¢ model based development; OMG's UML, MDA

www.hist.gov

" Checking quality
¢ practice: testing - ad hoc, too late, expensive, lot of time

¢ research: formal verification - proofs, model checking,

with disappointing practical impact

Model-Based Testing

" Model based testing has potential o combine
¢ practice - testing
¢ theory - formal methods
" Model Based Testing :
+ testing with respect to a (formal) model / specification
state model, pre/post, CSP, Promela, UML, Spec#,
¢ promises better, faster, cheaper festing:
o algorithmic generation of tests and test oracles : tools
o formal and unambiguous basis for testing
e measuring the completeness of tests

e maintenance of tests through model modification

La@uSo

*

Automated Model-Based Testing

test
generation o
tool

IUT
confto
model

IUT confto model
test

exhaustive mU‘ sound execution -

tool
IUT passes tests

IUT = implementation under test
pass fail 5

La@uSo
* A Model-Based Development Process

informal

requirements informal world

_ -~ specification

validation /!

Y
~

S~ -
=7
formal !
verification \
~

world of models

real world

Model-Based Testing

Formal Specification-Based Functional Testing

Testing functional behaviour

of black-box implementation

model-based testing

world of models with respect to a model

real world in a well-defined language

based on a formal definition

implementation
under test)
IUT

of correctness

specification/model is basis for testing

La@uSo

*

Approaches to Model-Based Testing

Several modeling paradigms:
" Finite State Machine

&= Pre/post-conditions

" Programs as Functions

“~ Abstract Data Type festing

Model Based Testing
with Transition Systems

test
generation
tool

IUT coiifibcansdel
test

exhausﬁveﬂ U Py cxccution [

tool
IUT] pders) testisass

pass fail

La@uSo
* Process of Model-Based Testing

Involves:
+ models
* correctness

test * implementation IUT
generation

¥

* test generation
‘ + test execution
’ * test result analysis

<IIIIIIIIII

fests

test
execution

La@uSo
* Models

Labelled Transition System: (S, L, T, sg)

/ \
states initial state
So€ S
actions

[) ?button

?button

Models
Input-Enabled Transition Systems

?kwart

?2dub
?kwart
lcoffee

?2dub
?kwart

?kwart

Correctness
Implementation Relation 10CO

iiocos =, Vo e Straces(s): out(i after) < out (s after c)

= V Ix e Lyuit}. p%%.
Straces(s) = { o e (LUB)* | s== }

p after o = {p | p==p}

out(P) :{!xeLulp!L.,peP}u{SlpL.p, peP}

Correctness
Implementation Relation 10CO

iiocos =44 Vo e Straces(s): out(i after c) c out (s after o)

Intuition:
i ioco-conforms to s, iff

- if i produces output x after frace o,
then s can produce x affer o

« if i cannot produce any output after trace o,
then s cannot produce any output after o (guiescence o)

14

La@uSo

*

?kwart
?dub

?dub

)
Pkwart lcoffee

?2dub
?kwart

Test Cases

Model of test case
= transition system :

‘quiescence’ label 0
tree-structured
finite, deterministic
final states pass and fail
from each state # pass, fail :
o either one input la
e or all outputs ?x and 6

pass

Implementation Relation i0CO

pass fail

fail

LaQuSo
* I0CO Test Generation Algorithm

Algorithm

To generate a test case from transition system specification s,
compute T(S), with S a set of states, and initially S = s, after ¢;

For T(S), apply the following recursively, non-deterministically:

end fest case 3 observe output

pass forbidden outputs allowed outputs
?y-. L ?X

fail fail ‘ ‘

| 1a T(S after Ix)
‘ T(S after 2a+ @) allowed outputs or &: Ix € out(S)
forbidden outputs or &: ly ¢ out(S)

17

supply input

Example: Test Generation

J/!coffee

53

Icoffee

Two test runs :

’r'llidUbe pass 1| i'

dub coffee 0

7] dub coffee B]
l s i passes t

Test Result Analysis
Completeness of 10CO Test Generation
For every fest t generated with algorithm we have:

%" Soundness :
t will never fail with correct implementation

i ioco s implies i passes t

“" Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ic%o s implies 3 t: ifailst

°
pass

10

Agenda

" Introduction to Model-based testing (MBT)
=" MBT Approach

= Tooling

" Case study

= Applicability of MBT

& Conclusions

La@uSo

*

Tooling

Some Model Based Testing Approaches and Tools

& AETG =" Spec#t/SpecExplorer

“ Agatha = Statemate MAGNUM ATG
= Agedis STG

; 2“*0“"“ = TestGen (Stirling)

- ~ooper TestGen (INT)

7 Gvst S
& Gotcha estComposer

7 Leirios

& Phact/The Kit

“ QuickCheck “ T-Uppaal
" RT-Tester & Tveda

= SaMsTa6

La@uSo .
x A Tool for Transition Systems

Testing: TorX

= On-the-fly test generation and test execution

& Implementation relation: ioco

¥ Mainly applicable to reactive systems / state based systems;
¢ specification languages: LOTOS, Promela, FSP, Automata

user:
l manual
automatic
(020
TorX

specification observe

output
l pass

fail

inconclusive

On-the-Fly Testing

states abstract bits
explorer «— primer <«— driver <«— adapter <«— IUT
transitions fransition actions bytes

specification implementation

? X (x <0)
? X (x>=0)

? X

Elle

{Re)Stat K | Moge: # ~ AUD, - AutoTrace, Deptnc [

Path

1103 1 51t

14 outpua): (Gulescense)

15 inpul{udp?): from_liwe | POU_JOIN| 18315212 11
16 oulputfudpZy bo_lower | POLU_ANSWER | 1021521112
17 outpia). (Guigscenss)

DU LEAVE | 103 1 62 1 01 1

] von_upper | JPIN | 102 1 52|
Curant stata offars n 1 21132 1

Inpuss:
wrom_upgper | LEAVE ! var_byte | var_byle 4 Deia
frim_ugper | DREG | var_byla | var_byts to_lower ! Jur ! wW2h621110
from_igwer | POU_JCIN | var_byte | var_byle | var_byts
from_iower | PDU_DATA | var_byte | var_byle | var_byt from_lover | [PIUDETA | 2111 341 01 1
from_lweer | POU_UEAVE | vas_brybes | var_bylie | vas_bry

| = A

FDU_J01}

wex | PDU_JoIH| ! 102 1 52 L A1 2

| Random it | Rardom o lover | POV JOIN 1 2028 521110

[vm teen | s

Vergict

from_wppex ! mEQ | 211 31

WIT Siditer; Ditbag: CI_c: Joining sendir is nof i g _ 11031521
IUT Stderr. Debug: cEc: Craats a id antwer
WT Stderr, Debug: of_ric: Send the rist answer uni ! 102 ! 52
WT Siden: Debug: cf_sLe; Endiving the sl snswer casel
WIT Siderr: Dirbeag s Audd T st b parke!
WUT Stderr. Detug: CE_sLe: answer. Insent paren
WT Stderr. Detug. of_stc. Constnit answer pdw
Send answer-pdul
preding ANSWER- s (21 bibes) b u:

Save in: msc-1.ps | Close |

Pl

La@uSo
* Interpay “Rekeningrijden”
Payment Box Protocol

"Rekeningrijden”

Characteristics :

=" Simple protocol
& Parallellism :
¢ many cars at the same time
=" Encryption
" Real-time issues

" System passed traditional testing phase

“Rekeningrijden”
Highway Tolling System

Onboard
Unit Road Side

Equipment

PR

Wireless UDP/IP

14

La@uSo

*

"Rekeningrijden”: Test Architecture

La@uSo

*

"Rekeningrijden”: Test Architecture

spec Test Context

ObuSim

i aEmEmz SEEEEZ
+ PCO TCPIP ubpiP |AP
ObuSim ‘ CHEEEE CEEEEE
+ '
TCP/IP
+

UDP/IP

PB

15

La@uSo

*

“Rekeningrijden” : Results

& Test environment : set-up challenging

" Parallellism : easy o test for many cars in parallel
& Test results :

¢ 1error during validation (design error)

¢ 1error during testing (coding error)
& Automated testing :

¢ beneficial: high volume and reliability

¢ many and long tests executed (>50,000 test events)

¢ very flexible: adaptation and many configurations

Step ahead in model-based testing

Agenda

" Introduction to Model-based testing (MBT)
“" MBT Approach

= Tooling

& Case study

=" Applicability of MBT

=~ Conclusions

16

Applicability of MBT

“~ Model Based Testing is advocated for longer time

¢ Paper Apfelbaum and Doyle, 1997

¢ Keynote Robinson (Google) at EuroStar 2005
=" Applied by companies like Cisco, IBM, Google and MicroSoft
=" So, how is your Model Based Testing today?

La@uSo

*

MBT application @ Bellcore

= MBT approach applied on large projects (Dalal et al, 1999)
" Modeling notation: AETGSpec (test data model)
= Domain: Telecom; several applications:

Total test cases | Failed test Failure
cases classes
Arithmetic functions 1601 -
e L R
= Experiences:

¢ Discovery of failures that otherwise (with manual testing) not have
been detected before reaching customer

¢ Demand for development skills from testers
¢ Reengineering test process

17

La@uSo

*

MBT application @ MicroSoft

" MBT tool: SpecExplorer (Campbell et al, 2005)
¢ Successor of Abstract State Machines (ASML)
Modeling language: Spec#
Domain: MS-software

¢ E.g., driver software; parallel processes (reactive behavior, dynamic object
creation, non-determinism)

& Experiences:
¢ Models help discover more bugs during modeling than testing
During testing, models help discover deep system level bugs
New sw-functions require small changes compared to manual testing
Tooling; importance of built-in test-harness

User feedback showed that improvements were necessary (Scenario
control, Model composition, Continuing testing after failures)

La@uSo
* Factors that determine the
applicability of MBT

&~ Model

¢ Availability of (input for) models; link requirements to
model

¢ Link UML (still lack of semantics) - MBT (formal)
Test harness that matches model
¢ SUT = Test harness + TUT
e SUT - system under test,
e IUT - implementation under test
=" Test selection heuristics
¢ Coverage
“~ Organizational awareness
¢ Testing integrated with development

18

When does MBT pay off?

" Factors that change the curve

Conventional
testing

More testing
possible due to
automated testing

Define
models,
Engineer
test'process

Conclusions

Model Based Testing:
=~ When to apply?:
¢ Model available or can be derived; modeling is hard
¢ Applies to specification, design and realization/sw-implementation

= How to apply? We showed for labelled transition systems:
¢ ioco for expressing conformance between imp and spec
¢ asound and exhaustive test generation algorithm

¢ tools generating and executing tests:
TGV, TestGen, Agedis, TorX,

19

More information

General info, contact info:
“ www.laquso.com
= www.esi.nl

Specific MBT info:
= http://www.cs.ru.nl/~tretmans
= Torx: http://fmt.cs.utwente.nl/tools/torx/introduction.html

20

