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Introduction

~ Increase in complexity, and quest for higher quality software
¢ testing effort grows exponentially with complexity
¢ testing cannot keep pace with development

“ More abstraction
¢ less detail

¢ model based development; OMG's UML, MDA

www.hist.gov

" Checking quality
¢ practice: testing - ad hoc, too late, expensive, lot of time

¢ research: formal verification - proofs, model checking, . ...

with disappointing practical impact

Model-Based Testing

" Model based testing has potential o combine
¢ practice - testing
¢ theory - formal methods
" Model Based Testing :
+ testing with respect to a (formal) model / specification
state model, pre/post, CSP, Promela, UML, Spec#, ....
¢ promises better, faster, cheaper festing:
o algorithmic generation of tests and test oracles : tools
o formal and unambiguous basis for testing
e measuring the completeness of tests

e maintenance of tests through model modification
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Automated Model-Based Testing
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Model-Based Testing

Formal Specification-Based Functional Testing

Testing functional behaviour

of black-box implementation

model-based testing

world of models with respect to a model

real world in a well-defined language

based on a formal definition

implementation
under test )
IUT

of correctness

specification/model is basis for testing
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Approaches to Model-Based Testing

Several modeling paradigms:
" Finite State Machine

&= Pre/post-conditions

" Programs as Functions

“~ Abstract Data Type festing




Model Based Testing
with Transition Systems
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* Process of Model-Based Testing

Involves:
+ models
* correctness

test * implementation IUT
generation

¥

* test generation
‘ + test execution
’ * test result analysis
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Labelled Transition System: (S, L, T, sg)
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Input-Enabled Transition Systems
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Correctness
Implementation Relation 10CO

iiocos =, Vo e Straces(s): out(i after ) < out (s after c)

= V Ix e Lyuit}. p%%.
Straces(s) = { o e (LUB)* | s== }

p after o = {p | p==p}

out(P) :{!xeLulp!L.,peP}u{SlpL.p, peP}

Correctness
Implementation Relation 10CO

iiocos =44 Vo e Straces(s): out(i after c) c out (s after o)

Intuition:
i ioco-conforms to s, iff

- if i produces output x after frace o,
then s can produce x affer o

« if i cannot produce any output after trace o,
then s cannot produce any output after o ( guiescence o )
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Test Cases

Model of test case
= transition system :

‘quiescence’ label 0
tree-structured
finite, deterministic
final states pass and fail
from each state # pass, fail :
o either one input la
e or all outputs ?x and 6

pass

Implementation Relation i0CO

pass fail

fail
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Algorithm

To generate a test case from transition system specification s,
compute T(S), with S a set of states, and initially S = s, after ¢;

For T(S), apply the following recursively, non-deterministically:

end fest case 3 observe output

pass forbidden outputs allowed outputs
?y-. L ?X

fail fail ‘ ‘

| 1a T(S after Ix)
‘ T(S after 2a+ @) allowed outputs or &: Ix € out(S)
forbidden outputs or &: ly ¢ out(S)

17

supply input

Example: Test Generation

J/!coffee
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Icoffee

Two test runs :

’r'llidUbe pass 1| i'

dub coffee 0

7] dub coffee B ]
l s i passes t

Test Result Analysis
Completeness of 10CO Test Generation
For every fest t generated with algorithm we have:

%" Soundness :
t will never fail with correct implementation

i ioco s implies i passes t

“" Exhaustiveness :
each incorrect implementation can be detected
with a generated test t

i ic%o s implies 3 t: ifailst

°
pass
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Tooling

Some Model Based Testing Approaches and Tools

& AETG =" Spec#t/SpecExplorer

“ Agatha = Statemate MAGNUM ATG
= Agedis STG

; 2“*0“"“ = TestGen (Stirling)

- ~ooper TestGen (INT)

7 Gvst S
& Gotcha estComposer

7 Leirios

& Phact/The Kit

“ QuickCheck “ T-Uppaal
" RT-Tester & Tveda

= SaMsTa6
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Testing: TorX

= On-the-fly test generation and test execution

& Implementation relation: ioco

¥ Mainly applicable to reactive systems / state based systems;
¢ specification languages: LOTOS, Promela, FSP, Automata

user:
l manual
automatic
(020
TorX

specification observe

output
l pass

fail

inconclusive

On-the-Fly Testing

states abstract bits
explorer «— primer <«— driver <«— adapter <«— IUT
transitions fransition actions bytes

specification implementation

? X (x <0)
? X (x>=0)

? X
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"Rekeningrijden”

Characteristics :

=" Simple protocol
& Parallellism :
¢ many cars at the same time
=" Encryption
" Real-time issues

" System passed traditional testing phase

“Rekeningrijden”
Highway Tolling System

Onboard
Unit Road Side

Equipment

PR

Wireless UDP/IP
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"Rekeningrijden”: Test Architecture
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"Rekeningrijden”: Test Architecture

spec Test Context

ObuSim

i  aEmEmz SEEEEZ
+ PCO TCPIP ubpiP  |AP
ObuSim ‘ CHEEEE CEEEEE
+ '
TCP/IP
+

UDP/IP

PB
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“Rekeningrijden” : Results

& Test environment : set-up challenging

" Parallellism :  easy o test for many cars in parallel
& Test results :

¢ 1error during validation (design error)

¢ 1error during testing (coding error)
& Automated testing :

¢ beneficial: high volume and reliability

¢ many and long tests executed (>50,000 test events )

¢ very flexible: adaptation and many configurations

Step ahead in model-based testing

Agenda

" Introduction to Model-based testing (MBT)
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=" Applicability of MBT

=~ Conclusions
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Applicability of MBT

“~ Model Based Testing is advocated for longer time

¢ Paper Apfelbaum and Doyle, 1997

¢ Keynote Robinson (Google) at EuroStar 2005
=" Applied by companies like Cisco, IBM, Google and MicroSoft
=" So, how is your Model Based Testing today?
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MBT application @ Bellcore

= MBT approach applied on large projects (Dalal et al, 1999)
" Modeling notation: AETGSpec (test data model )
= Domain: Telecom; several applications:

Total test cases | Failed test Failure
cases classes
Arithmetic functions 1601 -
e L R
= Experiences:

¢ Discovery of failures that otherwise (with manual testing) not have
been detected before reaching customer

¢ Demand for development skills from testers
¢ Reengineering test process

17
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MBT application @ MicroSoft

" MBT tool: SpecExplorer (Campbell et al, 2005)
¢ Successor of Abstract State Machines (ASML)
Modeling language: Spec#
Domain: MS-software

¢ E.g., driver software; parallel processes (reactive behavior, dynamic object
creation, non-determinism)

& Experiences:
¢ Models help discover more bugs during modeling than testing
During testing, models help discover deep system level bugs
New sw-functions require small changes compared to manual testing
Tooling; importance of built-in test-harness

User feedback showed that improvements were necessary (Scenario
control, Model composition, Continuing testing after failures)

La@uSo
* Factors that determine the
applicability of MBT

&~ Model

¢ Availability of (input for) models; link requirements to
model

¢ Link UML (still lack of semantics) - MBT (formal)
Test harness that matches model
¢ SUT = Test harness + TUT
e SUT - system under test,
e IUT - implementation under test
=" Test selection heuristics
¢ Coverage
“~ Organizational awareness
¢ Testing integrated with development
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When does MBT pay off?

" Factors that change the curve

Conventional
testing

More testing
possible due to
automated testing

Define
models,
Engineer
test'process

Conclusions

Model Based Testing:
=~ When to apply?:
¢ Model available or can be derived; modeling is hard
¢ Applies to specification, design and realization/sw-implementation

= How to apply? We showed for labelled transition systems:
¢ ioco for expressing conformance between imp and spec
¢ asound and exhaustive test generation algorithm

¢ tools generating and executing tests:
TGV, TestGen, Agedis, TorX, . ...
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More information

General info, contact info:
“ www.laquso.com
= www.esi.nl

Specific MBT info:
= http://www.cs.ru.nl/~tretmans
= Torx: http://fmt.cs.utwente.nl/tools/torx/introduction.html
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