

Paradijslaan28-28a, 5611 KN Eindhoven, The Netherlands
Phone: +31 40 235 9090, Fax: +31 40 235 9099, E-mail: info@verum.com

Commercial Register Eindhoven no.: 17106874l

Debugging Software Designs with
ASD

Document ID : DocID
Author : Guy H. Broadfoot
Version : 2.0 (Final), 14/10/2004

Copyright © 2004 Verum Consultants B.V.

All rights are reserved. No part of this publication may be reproduced in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner.

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 2 of 16

SUMMARY
This document describes an application of Analytical Software Design to an example Cruise
Control design.

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 3 of 16

TABLE OF CONTENTS

1 INTRODUCTION ...4
1.1 PURPOSE..4

2 CRUISE CONTROLLER DESIGN NOTES..5
2.1 SYSTEM CONTEXT ...5
2.2 LOGICAL ARCHITECTURE ..6
2.3 PHYSICAL ARCHITECTURE ..7
2.4 SPECIFYING DESIGNS AND INTERFACES...7
2.5 MODELLING FOR VERIFICATION ...8
2.6 SPECIFYING TIMING ASSUMPTIONS..9

3 MODEL CHECKING..11
3.1 GENERAL ..11
3.2 SOLUTION 0...11
3.3 SOLUTION 3...13
3.4 SOLUTION 4...15

4 CONCLUDING REMARKS ...16

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 4 of 16

1 INTRODUCTION

1.1 PURPOSE
This document describes how Verum applies Analytical Software Design techniques to verify
software designs before implementation.

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 5 of 16

2 CRUISE CONTROLLER DESIGN NOTES

2.1 SYSTEM CONTEXT
The Cruise Controller interfaces with a parallel interface from which driver input in the form of pedal
switch and button switch signals are received. On the diagram, this is labelled as PI and all events
from that interface are prefixed with pi. This interface is polled by the software every 100
milliseconds. It provides data input and error status only in response to a poll command.

The Cruise Controller interfaces with a hardware interface from which information is received about
the vehicle’s road speed. This is a “push” interface and data arrives without being polled. We have
not defined the form of this input or its interface; only that it is sufficient to enable us to compute the
vehicle’s road speed in cm/sec and provide this once every 100 milliseconds to the TCI interface.

The Cruise Controller interfaces with an Electronic Throttle Control Unit via the TCI interface. This
is a bought-in component whose behaviour is a given. If changes are required for some reason,
this must be accomplished either by negotiating an engineering change with the supplier, making a
hardware abstraction layer of software, or both. As seen from the specification document, many of
the system’s safety properties are actually implemented by this component.

The Cruise Controller interfaces with the rest of the Vehicle Management System via the CCI
interface. It receives commands for initialisation via this interface and reports back error
conditions.

System Overview

Cruise Controller

Parallel Interface Road Speed Input Throttle Controller

Driver
Input Poll Road Speed

input Commands

Engine / transmission / gas pedal
inputs

Brake, Clutch,
CC on/off, CC Resume

Throttle
Commands

Initialise / Terminate

Notifications

Notifications

Road Speed

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 6 of 16

2.2 LOGICAL ARCHITECTURE
The Cruise Controller Software has been divided into three processes (threads) or active
components. These are: CC, the overall control process, DDI, the Driver Data Input Process and
the SCI, the Speed Controller Process.

The CC process accepts commands from the Vehicle Management Interface (the Client) to initiate,
terminate and activate. In addition, it receives commands and status notifications from the DDI,
SCI and TCI components. The initiation and termination commands from the Client are executed
via synchronous interfaces. All other commands and notifications are received via a FIFO input
queue.

The separate activation command is provided to allow the Client flexibility in initialising all its
various subsystems on the vehicle.

The CC accepts all driver input from the DDI process, determines which commands are allowed in
which state and instructs other components to perform the necessary actions.

The DDI process polls the parallel interface and maps the input signals to logical driver input
events. These are routed to the CC via its input queue for processing. The events corresponding
to the driver pressing the brake and/or clutch pedal are combined into a single pair of “Disable” and
“Enable” stimuli. It is not necessary to distinguish between the actual events because the CC’s
response is the same in both cases.

The SCI component receives the road speed input via interrupts, computes the actual road speed
in cm/sec and passes this to the TCI at a frequency of once per 100 milliseconds.

The TCI component accepts commands to engage, resume and disengage from the CC
component and speed inputs via its input queue from the SCI component. It also receives various
inputs from the vehicle interface concerning transmission status, motor status and gas pedal

Speed
Computer

Electronic Throttle
Control

Cruise Controller

TCI*

Driver Data
Input

Architecture Overview

Parallel Interface Road Speed Input

Driver Input Poll Road Speed Input

Engine /
transmission /

gas pedal
Brake, Clutch,

Motor on/off, CC on/off, CC Resume

Throttle
Commands

PI RSI

CCI*

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 7 of 16

position. When engaged, the TCI compares the actual road speed with the current set point and
issues the necessary throttle control commands.

2.3 PHYSICAL ARCHITECTURE
The components are connected to each other and to the Vehicle Management System via a 1.0
Mbit/s CAN Bus. The CC, DDI, SCI and TCI components are all packaged as individual ECU’s and
appear as nodes on the CAN bus network.

The CC component’s only connections with the rest of the vehicle (apart from power supply) is via
the CAN Bus.

The DDI has direct wired connections to its various switches and sensors via the parallel interface.
The decoded inputs are sent to the CC component via the CAN bus. Similarly, the SCI component
is directly wired to its source of input and it outputs its speed messages to the TCI via the CAN bus.

The TCI is connected directly to the throttle control hardware to control the vehicle speed. In
addition, it receives message via the CAN bus from the engine management system (torque, RPM,
etc.) and from the transmission (selected gear). With this information, plus the speed input, the TCI
computes required throttle setting and controls the vehicle speed.

2.4 SPECIFYING DESIGNS AND INTERFACES
The behaviour of the DDI, SCI and TCI processes are specified as functional specifications
describing their externally visible behaviour; we do not have the design of the TCI and we have not
yet made the designs of the DDI and SCI. In order to correctly represent the DDI and TCI
behaviour, abstract events are defined to represent the important input events from the vehicle
interfaces.

Speed
Computer

Electronic Throttle
Control

Cruise Controller

TCI*

Driver Data
Input

Architecture Overview

Parallel Interface Road Speed Input

Driver Input Poll Road Speed Input

Engine /
transmission /

gas pedal
Brake, Clutch,

Motor on/off, CC on/off, CC Resume

Throttle
Commands

PI RSI

CCI*

CAN Bus

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 8 of 16

In specifying DDI’s behaviour, for example, we do not need to distinguish between the various
combinations of input signals in order to model its behaviour as seen by the CC. It is sufficient
simply to recognise that input data arrives into the DDI and that it responds in a nondeterministic
way by choosing one of the possible responses. Until we make the design of the DDI, we do not
need to determine how this choice is made.

In a similar manner, the TCI component is modelled responding in a nondeterministic way to speed
input, choosing whether or not to respond as though the speed is out of range and triggering an
automatic disengagement action. Because this is a component purchased from an outside
supplier, we do not have design information available to us. However, as long as we accurately
model the possible range of its externally visible behaviours, we do not need to know how the
design resolves choices that appear to us to be nondeterministic.

We specify both the design of the CC component and the interfaces (externally visible behaviour)
as black boxes using the Sequence-based Specification method. The design is specified as a fully
specified, deterministic Black Box Function; the interfaces of the other components specifying the
externally visible behaviour are specified as underspecified black box functions to enable the
nondeterministic behaviour to be captured. All the black box functions can be plotted in the form of
state transition diagrams.

2.5 MODELLING FOR VERIFICATION
To verify the design of the CC component using model checking, we need CSP models of the CC
component design and the interfaces of all the other components. These models are generated
fully automatically from the black box specifications without needing any special CSP or modelling
knowledge. But these alone are not quite enough.

It is part of the ASD design approach that all sequences of input stimuli are explicitly captured and
specified, including those that represent illegal behaviour by one or more components. This illegal
behaviour is preserved in the CSP models so that the correctness verification can check for it.
However, the Model Checker assumes that all events offered by the models in each state are valid

Speed
Computer

Electronic Throttle
Control

Cruise Controller

TCI*

Driver Data
Input

SCI

Architecture Overview

Parallel Interface Road Speed Input

Driver Input Poll Road Speed Input

TCI
Commands

Engine / transmission /
gas pedal

Brake, Clutch,
Motor on/off, CC on/off, CC Resume Throttle

Commands

SCI Speed Notification

PI RSI

CCI*

DDI

Async TCI NotificationsAsync DDI Notifications

Async SCI Notifications

DDI Commands SCI Commands

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 9 of 16

and it will explore them all; this includes all illegal behaviour as well as all legal behaviour. In other
words, the Model Checker behaves as a badly behaved Client, trying everything.

This means that in many cases, we cannot meaningfully check the design together with the
interfaces it uses without providing some extra modelling to specify that our Clients will only behave
correctly. In this case, we provide two small models that are not part of the design but exist only for
the purposes of the verification; one of these behaves like a well-behaved Vehicle Management
System and the other behaves like a well-behaved parallel interface to the DDI component.
Between them, these two extra models constrain the inputs and outputs to the Cruise Control
System to those that are legal and expected.

We could, of course, leave this illegal behaviour out of the black box interface specifications when it
causes difficulties. We do not do this because when we design these other components we want
to use the same interface specifications to check these other designs.

2.6 SPECIFYING TIMING ASSUMPTIONS
CSP is an untimed process algebra; designs are checked on the assumption that any event can
occur infinitely quickly or infinitely slowly. The advantage of this is that correctness verification
does not depend on the accidental ordering of events between parallel processes; all interleaving
of events as allowed by the design are examined.

Many designs work in practice because there are known timing assumptions that are guaranteed
by the environment. For example, the DDI component generates input events to the CC at a far
lower rate than the CC can process them. This is because the DDI events represent interactions
via switches with the human driver. The rates at which these can occur are limited by the physical
characteristics of the switches and the physical ability of a human to operate them. Knowing this,
the maxim arrival rate of such events at the CC can be decided and the maximum number of these
events in the CC input can be computed. Similar analysis on the events between the CC and the
other components leads to computing the queue length needed to ensure that all operations
placing events in the CC queue are non-blocking.

SCI
DDI

TCI*

Cruise Controller

Cruise Controller Design Verification Model

TCI
Commands

SCI Speed Notification

Async TCI NotificationsAsync DDI Notifications

Async SCI Notifications

DDI Commands SCI Commands

CCI*

CCI Commands Async CC Notifications

Well behaved
PI

Well behaved Client

PI.piError
PI.piStatus

Modelling process
simulating well

behaved parallel
interface

Modelling process
simulating well

behaved Vehicle
management System

DDIsync.ddiActivate
DDIsync.ddiTerm

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 10 of 16

In the Cruise Control design as it stands, a deadlock check will fail. This is because these timing
assumptions are not built in to the model and the model checker assumes that the DDI can
generate driver input at an infinitely fast rate until filling the queue and being blocked by it. To
determine if the design is correct when subject to these timing assumptions, these assumptions
have to be added to the model. This is done by a technique called “Yoking”.

A “Yoke” is a special constraining process in CSP that limits the behaviour of a producer process to
the behaviour of the consumer process in such a way that the model reflects the timing
assumptions but has no new behaviour added and no existing behaviour removed. The ASD
modelling environment contains a generic template Yoke process that can be parameterised for a
given design.

It is good practice to verify designs as far as possible without specifying timing assumptions. There
are two principle reasons for this:

1. Designs with minimal timing assumptions are more robust and less easily broken by
future modifications or hardware changes. By verifying designs without timing
constraints and then adding only those essential to ensure correct behaviour, we
usually end up with far fewer timing constraints than would otherwise be the case and
these are clearly identified and documented for the future.

2. Adding timing constraints before verifying designs can lead to false assumptions being

added to the models which in turn, prevent possible design errors from being detected.

When a design cannot be verified without specifying timing constraints, always attempt to modify
the design where possible to avoid the need to add them. Timing assumptions should be added
only in the last resort.

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 11 of 16

3 MODEL CHECKING

3.1 GENERAL
During the demonstration, we examined the mathematical models of the Cruise Controller design
to ensure that no events are sent between components in such a way that this would violate the
intended design behaviour. This is a general “sanity” check performed for every design; it is
analogous to building architect instructing a structural engineer to perform a finite element analysis
of a building’s structural design in order to ensure that it will not collapse. In our case, we are
examining the design together with the interface specifications of the other, used components in
order to ensure that our design behaves according to the interface specifications of those other
components.

3.2 SOLUTION 0
Check each component (or component interface) to see if the combined system forces any of them
into an illegal response.

In this case, TCI generates an illegal response as shown by the following traces:

CC’s client (the vehicle) commands it to initialise. The CC commands the TCI to initialise itself via
the synchronous tciInit interface. The TCI initialises correctly and the CC commands the SCI to
initialise via its synchronous sciInit interface. While SCI is initialising, the vehicle interface TVI
detects and reports an error to the TCI. The TCI detects this, responds by posting a tciError event
to the CC’s input queue and terminates itself by entering the Un-initialised State. The SCI
responds synchronously that it has failed to initialise.

The CC responds to the SCI initialisation failure (which it sees before it sees the asynchronous
tciError notification because initialisation is performed synchronously) by issuing a tciTerm
command to the TCI via its synchronous interface. This is illegal when TCI is in the Un-initialised
State.

ccInit
tciInit

tciInitOk

sciInit

tviError

sciInitNOk

CC Queue

tviError

tciTerm

Traces after Solution 0
TVI SCI TCI CC Client

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 12 of 16

This cannot be solved with the interface behaviour of the TCI as currently specified. The problem
is that the TCI component’s Ready State is unstable and can transit to a state, namely the Un-
initialised State, that defines as illegal some of the events allowed in Ready State.

The proposed change is to introduce a stable Error State into the TCI interface behaviour. In this
state, everything that is legal in Ready State is also legal in the new Error State, although it acts
differently by ignoring everything except the tciTerm command.

All errors in TCI result in a transition to Error State followed by an event tciError being sent
asynchronously to the CC. TCI remains in this state until it receives a tciTerm command from the
CC, upon which it transits to Un-initialised State.

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 13 of 16

3.3 SOLUTION 3
Rerun the check on TCI to see if the proposed design changes solve our problem. Again, an error
is encountered with the following trace (the trace shown starts after the system has completed
initialisation):

This is a complicated case and at first sight it is not clear what is happening. Due to the length of
the combined trace, it is helpful to “drill down” into the TCI component and look at its trace
separately:

TCIsync.tciInit,
TCIsync.tciInitOK,
TCIinQueue.tciEngage,
TCIinQueue.tciDisengage,
TCIoutQueue.tciEngage,
TCIinQueue.tciResume,
TCI2CC.tciAutoDisengage,
TCIoutQueue.tciDisengage,
TCIinQueue.tciEngage,
TCIoutQueue.tciResume,
TCIoutQueue.tciEngage,
Illegal.TCI_Tag.

Now it is clear that CC instructed the TCI to engage itself via a TCIResume event and while the
TCI was already in the Engaged State, the CC issued a TCIEngage event. This is a clear
violation of the TCI interface specification by the CC.

The trace of CC events is as follows:

CCsync.CCInit,
TCIsync.TCIInit,

piStatu
ddiCcO

piStatuddiCcO

tciEngag

ddiCcDisabl

piStatu
ddiCcEnabl

tciDisengag

ddiCcEnabl

piStatu

ddiCcResum

tciAutoDisengag
tciAutoDisengag

piStatu

ddiCcO
tciDisengag

tciEngag

ddiCcO

tciResum

tciEngag

tciEngag
ddiCcResum

tciResum

ddiCcDisabl

Traces after Solution 3 – after initialisation and activation

CC CC TCI TCI DDI PI

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 14 of 16

TCIsync.TCIInitOK,
SCIsync.sciInit,
SCIsync.sciInitOK,
DDIsync.ddiInit,
DDIsync.ddiInitOK,
CCsync.CCInitOK,
CCinQueue.CCActivate,
CCoutQueue.CCActivate,
SCIsync.sciActivate,
DDIsync.ddiActivate,
CCinQueue.ddiCCOn,
CCoutQueue.ddiCCOn,
CC2TCI.TCIEngage, (*)
CCinQueue.ddiCCDisable,
CCoutQueue.ddiCCDisable,
CCinQueue.ddiCCEnable,
CC2TCI.TCIDisengage,
CCoutQueue.ddiCCEnable,
CCinQueue.ddiCCResume,
CCoutQueue.ddiCCResume,
CC2TCI.TCIResume, (**)
CCinQueue.TCIAutoDisengage, (***)
CCoutQueue.TCIAutoDisengage,
CCinQueue.ddiCCOn,
CCoutQueue.ddiCCOn,
CC2TCI.TCIEngage.

Now we can see that this error is caused by the lack of synchronisation points in the protocol
between the CC and the TCI. Because of the queue to TCI, the TCI is running behind the
behaviour of the CC. As a result, when the CC encounters the TCIAutoDisengage event (***) it
interprets it as being a response to the TCIResume command (**) it sent to the TCI; in fact, the
TCIAutodisengage event (***) is a response by the TCI to the TCIEngage event (*).

In this situation, the TCI is effectively one set of state transitions behind the CC, leading to the
sequence <TCIResume, TCIEngage>. In other words, CC is trying to engage the TCI when it is
already engaged.

There is no obvious solution to this problem without changing the TCI specification to give a
notification when it changes state to Ready from Engaged in all cases, also when the CC instructs
it to. This allows the CC to synchronise the unstable state transitions sufficiently to keep track of
the TCI and avoid this problem.

This also requires us to make a change to the CC design. We have to include two new states,
Suspending and Blocking, as “parking” states while the CC waits for confirmation that TCI has left
Engaged State. The modified TCI behaviour will then be as follows: after CC sends a
TCIDisengage command to the TCI, it will always receive a TCIError or TCIAutoDisengage event
as a response. These may have been posted into the CC input before or after the TCIDisengage
command was issued by the CC, but they appear to the CC as responses to that command.

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 15 of 16

3.4 SOLUTION 4
Now we rerun the check on TCI to see if the proposed design changes solve our problem. This
time, the design generates no illegal behaviour from TCI.

Now we run a check for any illegal behaviour by any component to see if the system design
functions correctly.

This check passes – there are no circumstances under which the CC component design emits an
illegal response or any of the interfaces to DDI, SCI or TCI are misused by the design.

These are “timeless” verifications of functional behaviour. They do not take into account real
delays in the systems that might have prevented some of these behaviours in practice. The checks
assume anything can happen at any speed and checks all combinations of state transitions
between all the components in the system.

This is an exhaustive examination of this design. Every possible scenario that the design can
perform has been examined. It is equivalent to total test case coverage based on execution paths
and not just executable statements.

The design is now ready to be analysed for safety and liveness properties to ensure that it meets
its requirements.

Debugging Software Designs with ASD

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 16 of 16

4 CONCLUDING REMARKS
Verum Consultants are committed to the following software design principles:

1. Business Critical Software must be implemented from specifications and designs that
are verifiably correct before implementation starts.

2. Software Architects and designers must restrict themselves to those architectures and

designs that can be verified using currently available tools and techniques.

Verum invests heavily in research and development with leading universities to broaden the range
of mathematical methods and tools we can apply to our client’s needs.

During this exercise, we have seen how the dynamic behaviour of a software design can be
examined by mathematical modelling and simulation. No programming was needed and indeed,
none of the components involved in the design have been implemented before this verification took
place.

This approach has two significant benefits:

1. It is much cheaper and quicker to verify designs this way. We have not invested in
programming the design errors and then spent time debugging the code. Instead, we
are able to verify designs and remove design errors before investing in programming.
This results in implementations that are already at a higher quality level than is usually
the case when testing starts, reducing project delays due to integration and testing
problems. This means lower costs and shorter time to market.

2. It is much more certain to verify designs this way instead of trying to find such errors by

testing the implementation. Many of the most difficult issues in software design are
those related to timing problems, race conditions and concurrency. Such errors are
very difficult to reproduce by testing, occur unpredictably and are very time consuming
and expensive to find. More importantly, testing can never be complete; even the most
extensive testing represents a very small sample of the total execution scenarios
implemented in the software under test. Verifying designs mathematically before
implementation is much more certain. These are mathematical proofs that hold in all
possible cases and every execution scenario. They do not require Test Engineers to
think of the “corner cases” and prepare test cases and test programs. The
mathematical models of the designs embody every possible execution scenario and
the model checker checks them all. This means higher product quality.

