
 

Paradijslaan28-28a, 5611 KN  Eindhoven, The Netherlands 
Phone: +31 40 235 9090, Fax: +31 40 235 9099, E-mail: info@verum.com 

Commercial Register  Eindhoven no.: 17106874l 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Debugging Software Designs with 
ASD 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Document ID :  DocID 
Author :  Guy H. Broadfoot 
Version :  2.0 (Final), 14/10/2004 
 
 
 
 
 
 
 
Copyright © 2004 Verum Consultants B.V. 
 
All rights are reserved. No part of this publication may be reproduced in any form or by any means, electronic, 
mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. 
 



Debugging Software Designs with ASD 

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 2 of 16 

SUMMARY 
This document describes an application of Analytical Software Design to an example Cruise 
Control design.
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1 INTRODUCTION 

1.1 PURPOSE 
This document describes how Verum applies Analytical Software Design techniques to verify 
software designs before implementation. 
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2 CRUISE CONTROLLER DESIGN NOTES 

2.1 SYSTEM CONTEXT 
The Cruise Controller interfaces with a parallel interface from which driver input in the form of pedal 
switch and button switch signals are received.  On the diagram, this is labelled as PI and all events 
from that interface are prefixed with pi.  This interface is polled by the software every 100 
milliseconds.  It provides data input and error status only in response to a poll command. 
 
The Cruise Controller interfaces with a hardware interface from which information is received about 
the vehicle’s road speed.  This is a “push” interface and data arrives without being polled.  We have 
not defined the form of this input or its interface; only that it is sufficient to enable us to compute the 
vehicle’s road speed in cm/sec and provide this once every 100 milliseconds to the TCI interface. 

 
 
The Cruise Controller interfaces with an Electronic Throttle Control Unit via the TCI interface.  This 
is a bought-in component whose behaviour is a given.  If changes are required for some reason, 
this must be accomplished either by negotiating an engineering change with the supplier, making a 
hardware abstraction layer of software, or both.  As seen from the specification document, many of 
the system’s safety properties are actually implemented by this component. 
 
The Cruise Controller interfaces with the rest of the Vehicle Management System via the CCI 
interface.  It receives commands for initialisation via this interface and reports back error 
conditions. 
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2.2 LOGICAL ARCHITECTURE 
The Cruise Controller Software has been divided into three processes (threads) or active 
components.  These are: CC, the overall control process, DDI, the Driver Data Input Process and 
the SCI, the Speed Controller Process. 
 
The CC process accepts commands from the Vehicle Management Interface (the Client) to initiate, 
terminate and activate.  In addition, it receives commands and status notifications from the DDI, 
SCI and TCI components.  The initiation and termination commands from the Client are executed 
via synchronous interfaces.  All other commands and notifications are received via a FIFO input 
queue. 

 
 
 
The separate activation command is provided to allow the Client flexibility in initialising all its 
various subsystems on the vehicle. 
 
The CC accepts all driver input from the DDI process, determines which commands are allowed in 
which state and instructs other components to perform the necessary actions. 
 
The DDI process polls the parallel interface and maps the input signals to logical driver input 
events.  These are routed to the CC via its input queue for processing.  The events corresponding 
to the driver pressing the brake and/or clutch pedal are combined into a single pair of “Disable” and 
“Enable” stimuli.  It is not necessary to distinguish between the actual events because the CC’s 
response is the same in both cases. 
 
The SCI component receives the road speed input via interrupts, computes the actual road speed 
in cm/sec and passes this to the TCI at a frequency of once per 100 milliseconds. 
 
The TCI component accepts commands to engage, resume and disengage from the CC 
component and speed inputs via its input queue from the SCI component.  It also receives various 
inputs from the vehicle interface concerning transmission status, motor status and gas pedal 
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position.  When engaged, the TCI compares the actual road speed with the current set point and 
issues the necessary throttle control commands. 
 

2.3 PHYSICAL ARCHITECTURE 
The components are connected to each other and to the Vehicle Management System via a 1.0 
Mbit/s CAN Bus.  The CC, DDI, SCI and TCI components are all packaged as individual ECU’s and 
appear as nodes on the CAN bus network. 

 
The CC component’s only connections with the rest of the vehicle (apart from power supply) is via 
the CAN Bus. 
 
The DDI has direct wired connections to its various switches and sensors via the parallel interface.  
The decoded inputs are sent to the CC component via the CAN bus.  Similarly, the SCI component 
is directly wired to its source of input and it outputs its speed messages to the TCI via the CAN bus. 
 
The TCI is connected directly to the throttle control hardware to control the vehicle speed.  In 
addition, it receives message via the CAN bus from the engine management system (torque, RPM, 
etc.) and from the transmission (selected gear).  With this information, plus the speed input, the TCI 
computes required throttle setting and controls the vehicle speed. 
   

2.4 SPECIFYING DESIGNS AND INTERFACES 
The behaviour of the DDI, SCI and TCI processes are specified as functional specifications 
describing their externally visible behaviour; we do not have the design of the TCI and we have not 
yet made the designs of the DDI and SCI.  In order to correctly represent the DDI and TCI 
behaviour, abstract events are defined to represent the important input events from the vehicle 
interfaces. 
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In specifying DDI’s behaviour, for example, we do not need to distinguish between the various 
combinations of input signals in order to model its behaviour as seen by the CC.  It is sufficient 
simply to recognise that input data arrives into the DDI and that it responds in a nondeterministic 
way by choosing one of the possible responses.  Until we make the design of the DDI, we do not 
need to determine how this choice is made. 
 
In a similar manner, the TCI component is modelled responding in a nondeterministic way to speed 
input, choosing whether or not to respond as though the speed is out of range and triggering an 
automatic disengagement action.  Because this is a component purchased from an outside 
supplier, we do not have design information available to us.  However, as long as we accurately 
model the possible range of its externally visible behaviours, we do not need to know how the 
design resolves choices that appear to us to be nondeterministic. 
 
We specify both the design of the CC component and the interfaces (externally visible behaviour) 
as black boxes using the Sequence-based Specification method.  The design is specified as a fully 
specified, deterministic Black Box Function; the interfaces of the other components specifying the 
externally visible behaviour are specified as underspecified black box functions to enable the 
nondeterministic behaviour to be captured.  All the black box functions can be plotted in the form of 
state transition diagrams. 
 

2.5 MODELLING FOR VERIFICATION 
To verify the design of the CC component using model checking, we need CSP models of the CC 
component design and the interfaces of all the other components.  These models are generated 
fully automatically from the black box specifications without needing any special CSP or modelling 
knowledge.  But these alone are not quite enough. 
 
It is part of the ASD design approach that all sequences of input stimuli are explicitly captured and 
specified, including those that represent illegal behaviour by one or more components.  This illegal 
behaviour is preserved in the CSP models so that the correctness verification can check for it.  
However, the Model Checker assumes that all events offered by the models in each state are valid 

Speed
Computer

Electronic Throttle
Control

Cruise Controller

TCI*

Driver Data
Input

SCI

Architecture Overview

Parallel Interface Road Speed Input

Driver Input Poll Road Speed Input

TCI
Commands

Engine / transmission /
gas pedal

Brake, Clutch,
Motor on/off, CC on/off, CC Resume Throttle

Commands

SCI Speed Notification

PI RSI

CCI*

DDI

Async TCI NotificationsAsync DDI Notifications

Async SCI Notifications

DDI Commands SCI Commands



Debugging Software Designs with ASD 

Copyright © 2004 Verum Consultants Version 2.0 (Final), 14/10/2004 Page 9 of 16 

and it will explore them all; this includes all illegal behaviour as well as all legal behaviour.  In other 
words, the Model Checker behaves as a badly behaved Client, trying everything. 

 
This means that in many cases, we cannot meaningfully check the design together with the 
interfaces it uses without providing some extra modelling to specify that our Clients will only behave 
correctly.  In this case, we provide two small models that are not part of the design but exist only for 
the purposes of the verification; one of these behaves like a well-behaved Vehicle Management 
System and the other behaves like a well-behaved parallel interface to the DDI component.  
Between them, these two extra models constrain the inputs and outputs to the Cruise Control 
System to those that are legal and expected. 
 
We could, of course, leave this illegal behaviour out of the black box interface specifications when it 
causes difficulties.  We do not do this because when we design these other components we want 
to use the same interface specifications to check these other designs. 
 

2.6 SPECIFYING TIMING ASSUMPTIONS 
CSP is an untimed process algebra; designs are checked on the assumption that any event can 
occur infinitely quickly or infinitely slowly.  The advantage of this is that correctness verification 
does not depend on the accidental ordering of events between parallel processes; all interleaving 
of events as allowed by the design are examined. 
 
Many designs work in practice because there are known timing assumptions that are guaranteed 
by the environment.   For example, the DDI component generates input events to the CC at a far 
lower rate than the CC can process them.  This is because the DDI events represent interactions 
via switches with the human driver.  The rates at which these can occur are limited by the physical 
characteristics of the switches and the physical ability of a human to operate them.  Knowing this, 
the maxim arrival rate of such events at the CC can be decided and the maximum number of these 
events in the CC input can be computed.  Similar analysis on the events between the CC and the 
other components leads to computing the queue length needed to ensure that all operations 
placing events in the CC queue are non-blocking. 
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In the Cruise Control design as it stands, a deadlock check will fail.  This is because these timing 
assumptions are not built in to the model and the model checker assumes that the DDI can 
generate driver input at an infinitely fast rate until filling the queue and being blocked by it.  To 
determine if the design is correct when subject to these timing assumptions, these assumptions 
have to be added to the model.  This is done by a technique called “Yoking”. 
 
A “Yoke” is a special constraining process in CSP that limits the behaviour of a producer process to 
the behaviour of the consumer process in such a way that the model reflects the timing 
assumptions but has no new behaviour added and no existing behaviour removed. The ASD 
modelling environment contains a generic template Yoke process that can be parameterised for a 
given design. 
 
It is good practice to verify designs as far as possible without specifying timing assumptions.  There 
are two principle reasons for this: 
 

1. Designs with minimal timing assumptions are more robust and less easily broken by 
future modifications or hardware changes.  By verifying designs without timing 
constraints and then adding only those essential to ensure correct behaviour, we 
usually end up with far fewer timing constraints than would otherwise be the case and 
these are clearly identified and documented for the future. 

 
2. Adding timing constraints before verifying designs can lead to false assumptions being 

added to the models which in turn, prevent possible design errors from being detected. 
 
When a design cannot be verified without specifying timing constraints, always attempt to modify 
the design where possible to avoid the need to add them.  Timing assumptions should be added 
only in the last resort. 
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3 MODEL CHECKING 

3.1 GENERAL 
During the demonstration, we examined the mathematical models of the Cruise Controller design 
to ensure that no events are sent between components in such a way that this would violate the 
intended design behaviour.  This is a general “sanity” check performed for every design; it is 
analogous to building architect instructing a structural engineer to perform a finite element analysis 
of a building’s structural design in order to ensure that it will not collapse.  In our case, we are 
examining the design together with the interface specifications of the other, used components in 
order to ensure that our design behaves according to the interface specifications of those other 
components. 

3.2 SOLUTION 0 
Check each component (or component interface) to see if the combined system forces any of them 
into an illegal response. 
 
In this case, TCI generates an illegal response as shown by the following traces: 
 

 
 
CC’s client (the vehicle) commands it to initialise.  The CC commands the TCI to initialise itself via 
the synchronous tciInit  interface.  The TCI initialises correctly and the CC commands the SCI to 
initialise via its synchronous sciInit interface.  While SCI is initialising, the vehicle interface TVI 
detects and reports an error to the TCI.  The TCI detects this, responds by posting a tciError event 
to the CC’s input queue and terminates itself by entering the Un-initialised State.  The SCI 
responds synchronously that it has failed to initialise. 
 
The CC responds to the SCI initialisation failure (which it sees before it sees the asynchronous 
tciError notification because initialisation is performed synchronously) by issuing a tciTerm 
command to the TCI via its synchronous interface.  This is illegal when TCI is in the Un-initialised 
State. 
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This cannot be solved with the interface behaviour of the TCI as currently specified.  The problem 
is that the TCI component’s Ready State is unstable and can transit to a state, namely the Un-
initialised State, that defines as illegal some of the events allowed in Ready State. 
  
The proposed change is to introduce a stable Error State into the TCI interface behaviour.  In this 
state, everything that is legal in Ready State is also legal in the new Error State, although it acts 
differently by ignoring everything except the tciTerm command. 
 
All errors in TCI result in a transition to Error State followed by an event tciError being sent 
asynchronously to the CC.  TCI remains in this state until it receives a tciTerm command from the 
CC, upon which it transits to Un-initialised State. 
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3.3 SOLUTION 3 
Rerun the check on TCI to see if the proposed design changes solve our problem.  Again, an error 
is encountered with the following trace (the trace shown starts after the system has completed 
initialisation): 
 

 
 
This is a complicated case and at first sight it is not clear what is happening.  Due to the length of 
the combined trace, it is helpful to “drill down” into the TCI component and look at its trace 
separately: 
 
TCIsync.tciInit, 
TCIsync.tciInitOK, 
TCIinQueue.tciEngage, 
TCIinQueue.tciDisengage, 
TCIoutQueue.tciEngage, 
TCIinQueue.tciResume, 
TCI2CC.tciAutoDisengage, 
TCIoutQueue.tciDisengage, 
TCIinQueue.tciEngage, 
TCIoutQueue.tciResume, 
TCIoutQueue.tciEngage, 
Illegal.TCI_Tag. 
 
Now it is clear that CC instructed the TCI to engage itself via a TCIResume event and while the 
TCI was already in the Engaged State, the CC issued a  TCIEngage event.  This is a clear 
violation of the TCI interface specification by the CC. 
 
The trace of CC events is as follows: 
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TCIsync.TCIInitOK, 
SCIsync.sciInit, 
SCIsync.sciInitOK, 
DDIsync.ddiInit, 
DDIsync.ddiInitOK, 
CCsync.CCInitOK, 
CCinQueue.CCActivate, 
CCoutQueue.CCActivate, 
SCIsync.sciActivate, 
DDIsync.ddiActivate, 
CCinQueue.ddiCCOn, 
CCoutQueue.ddiCCOn, 
CC2TCI.TCIEngage,   (*) 
CCinQueue.ddiCCDisable, 
CCoutQueue.ddiCCDisable, 
CCinQueue.ddiCCEnable,  
CC2TCI.TCIDisengage, 
CCoutQueue.ddiCCEnable, 
CCinQueue.ddiCCResume, 
CCoutQueue.ddiCCResume, 
CC2TCI.TCIResume,   (**) 
CCinQueue.TCIAutoDisengage, (***) 
CCoutQueue.TCIAutoDisengage, 
CCinQueue.ddiCCOn, 
CCoutQueue.ddiCCOn, 
CC2TCI.TCIEngage. 
 
Now we can see that this error is caused by the lack of synchronisation points in the protocol 
between the CC and the TCI.  Because of the queue to TCI, the TCI is running behind the 
behaviour of the CC.  As a result, when the CC encounters the TCIAutoDisengage event (***) it 
interprets it as being a response to the TCIResume command (**) it sent to the TCI; in fact, the 
TCIAutodisengage event (***) is a response by the TCI to the TCIEngage event (*). 
 
In this situation, the TCI is effectively one set of state transitions behind the CC, leading to the 
sequence <TCIResume, TCIEngage>.  In other words, CC is trying to engage the TCI when it is 
already engaged. 
 
There is no obvious solution to this problem without changing the TCI specification to give a 
notification when it changes state to Ready from Engaged in all cases, also when the CC instructs 
it to.  This allows the CC to synchronise the unstable state transitions sufficiently to keep track of 
the TCI and avoid this problem. 
 
This also requires us to make a change to the CC design.  We have to include two new states, 
Suspending and Blocking, as “parking” states while the CC waits for confirmation that TCI has left 
Engaged State.  The modified TCI behaviour will then be as follows: after CC sends a 
TCIDisengage command to the TCI, it will always receive a TCIError or TCIAutoDisengage event 
as a response.  These may have been posted into the CC input before or after the TCIDisengage 
command was issued by the CC, but they appear to the CC as responses to that command. 
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3.4 SOLUTION 4 
Now we rerun the check on TCI to see if the proposed design changes solve our problem.  This 
time, the design generates no illegal behaviour from TCI. 
 
Now we run a check for any illegal behaviour by any component to see if the system design 
functions correctly. 
 
This check passes – there are no circumstances under which the CC component design emits an 
illegal response or any of the interfaces to DDI, SCI or TCI are misused by the design. 
 
These are “timeless” verifications of functional behaviour.  They do not take into account real 
delays in the systems that might have prevented some of these behaviours in practice.  The checks 
assume anything can happen at any speed and checks all combinations of state transitions 
between all the components in the system. 
 
This is an exhaustive examination of this design.  Every possible scenario that the design can 
perform has been examined.  It is equivalent to total test case coverage based on execution paths 
and not just executable statements. 
 
The design is now ready to be analysed for safety and liveness properties to ensure that it meets 
its requirements. 
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4 CONCLUDING REMARKS 
Verum Consultants are committed to the following software design principles: 
 

1. Business Critical Software must be implemented from specifications and designs that 
are verifiably correct before implementation starts. 

 
2. Software Architects and designers must restrict themselves to those architectures and 

designs that can be verified using currently available tools and techniques. 
 
Verum invests heavily in research and development with leading universities to broaden the range 
of mathematical methods and tools we can apply to our client’s needs. 
 
During this exercise, we have seen how the dynamic behaviour of a software design can be 
examined by mathematical modelling and simulation.  No programming was needed and indeed, 
none of the components involved in the design have been implemented before this verification took 
place. 
 
This approach has two significant benefits: 
 

1. It is much cheaper and quicker to verify designs this way.  We have not invested in 
programming the design errors and then spent time debugging the code.  Instead, we 
are able to verify designs and remove design errors before investing in programming.  
This results in implementations that are already at a higher quality level than is usually 
the case when testing starts, reducing project delays due to integration and testing 
problems.  This means lower costs and shorter time to market. 

 
2. It is much more certain to verify designs this way instead of trying to find such errors by 

testing the implementation.  Many of the most difficult issues in software design are 
those related to timing problems, race conditions and concurrency.  Such errors are 
very difficult to reproduce by testing, occur unpredictably and are very time consuming 
and expensive to find.  More importantly, testing can never be complete; even the most 
extensive testing represents a very small sample of the total execution scenarios 
implemented in the software under test.  Verifying designs mathematically before 
implementation is much more certain.  These are mathematical proofs that hold in all 
possible cases and every execution scenario.  They do not require Test Engineers to 
think of the “corner cases” and prepare test cases and test programs.  The 
mathematical models of the designs embody every possible execution scenario and 
the model checker checks them all.  This means higher product quality. 

 
 
 


