
Open-source Versus Commercial
Software:

A Quantitative Comparison

Open-source Versus Commercial
Software:

A Quantitative Comparison

Rix Groenboom
Reasoning NL BV

rix.groenboom@reasoning.com

April 2003 - Reasoning, Inc 2

AgendaAgenda

About Reasoning
The Study
Inspection Results
Analysis
Conclusions
New results
Input for Discussion

April 2003 - Reasoning, Inc 3

About ReasoningAbout Reasoning

Reasoning provides an automated
inspection service for organizations that
develop software

Enables building better software in less
time and at lower cost

Support C, C++, and Java

Have inspected over 1B LOC

April 2003 - Reasoning, Inc 4

The StudyThe Study

First, some background:
Proponents of Open-Source software
have long claimed their code is of higher
quality
– Power of peer review
– Root cause analysis on site enables easier fix

Commercial software vendors have long
claimed their code is of higher quality
– Market focused
– Defined processes for development and

testing

April 2003 - Reasoning, Inc 5

The StudyThe Study

Why do the study ?
Our customers wanted to understand the real
differences between Open-Source software
and Commercial software
– Reasoning is uniquely positioned to provide this

information
When was the study performed ?

Open-source inspection = December 2002
Commercial inspections = Throughout 2002

April 2003 - Reasoning, Inc 6

Used Software InspectionUsed Software Inspection

AKA Peer Review
Implicit in Extreme Programming
Examination of source code to:
– Detect defects
– Trace code to requirements
– Check coding standards

April 2003 - Reasoning, Inc 7

Increased Reliability,
Reduced Cost and Time-to-Market

Value of InspectionsValue of Inspections

Software Development Lifecycle
Without ASI

Design Test

Savings

$$$
Code Integrate

With ASI Automated
Inspections

IntegrateCode

April 2003 - Reasoning, Inc 8

Types of Defects Searched forTypes of Defects Searched for

NULL Pointer Dereference
Out of Bounds Array Access
Memory Leak
Uninitialized Variable
Bad Deallocation

Using an Automated Software Inspection (ASI)
methodology.

April 2003 - Reasoning, Inc 9

ASI TechnologyASI Technology

Source
Code

Reports

ArchitectureArchitecture

Language
Parser

Potential
Violations

Summarize
CAGs by

Function &
Level

Symbolic
Evaluation

Using Value
Lattices

Computation
Analysis Graph
(CAG) Builder

Detection
Rules

Potential
Defects

Defect
Review

Feasible
Path

Analysis

April 2003 - Reasoning, Inc 10

Project ScopeProject Scope

Open Source implementation of TCP/IP in
version 2.4.19 of Linux Kernel

Five commercial implementations of TCP/IP
in commercial, general purpose operating
systems and telecommunications equipment

Why TCP/IP ?
– Well-defined set of published requirements
– Implementations have been in existence for

several years
– Publicly available conformance tests

April 2003 - Reasoning, Inc 11

static int sock_fasync(int fd, struct file *filp, int on) {
struct fasync_struct *fa, *fna=NULL, **prev;
struct socket *sock;
struct sock *sk;

if (on)
{

fna=(struct fasync_struct *)kmalloc(sizeof(struct fasync_struct),
GFP_KERNEL);

if(fna==NULL) return -ENOMEM;
}

sock = socki_lookup(filp->f_dentry->d_inode);

if ((sk=sock->sk) == NULL)
return -EINVAL;

Can You Spot the Defect?Can You Spot the Defect?

If this is true

.. and this true

.. this memory leaks

April 2003 - Reasoning, Inc 12

Actual ReportActual Report
DEFECT CLASS: Memory Leak
LOCATION: src\linux-2.4.19\net \socket.c : 750
DESCRIPTION Local variable fna, declared on line 735, is assigned a pointer to a block of memory

allocated by kmalloc on line 741. No other pointer refers to this memory block, so it is
inaccessible (still allocated, but unreachable) once fna goes out of scope after line 750.

PRECONDITIONS The conditional expression (on) on line 739 evaluates to true AND

 The conditional expression (fna==NULL) on line 742 evaluates to false AND
 The conditional expression ((sk=sock->sk) == NULL) on line 749 evaluates to true.
CODE FRAGMENT

73 3 s t a t i c i n t s oc k_ f a s yn c(i nt f d, s t r u c t f i l e * f i l p, i n t on)
73 4 {
73 5 s t ruct f a s ync_ s t ruc t *f a, *f na=NULL, **pre v;
73 6 s t r u c t s o cke t *s ock ;
73 7 s t r u c t s o ck *s k;
73 8
73 9 i f (on)
74 0 {
74 1 f na=(s t ruct f a s y nc_ s t ruct *) kma l l oc (s i ze of (s t ruct f a s y nc_ s t ru

GFP_ KERNEL) ;
74 2 i f (f na==NULL)
74 3 r e t u r n - ENOMEM;
74 4 }
74 5
74 6
74 7 s o ck = s o cki _l oo kup (f i l p- >f _d ent r y - >d _i no de) ;
74 8
74 9 i f ((s k=s ock- >s k) == NULL)
75 0 re t urn - EI NVAL;
75 1
75 2 l o ck _s o ck (s k) ;
75 3
75 4 pr ev =&(s o ck - >f as ync _ l i s t) ;
75 5
75 6 f o r (f a =* pr e v; f a ! =NULL; p r e v=&f a - >f a_ ne xt , f a =* pr e v)
75 7 i f (f a - >f a_ f i l e==f i l p)
75 8 br ea k;
75 9
76 0 i f (o n)

April 2003 - Reasoning, Inc 13

Defect OverviewDefect Overview

8312Totals

39
Out of
Bounds Array
Access

1132Uninitialized
Variable

00Bad
Deallocation

3128Null Pointer
Dereference

143Memory Leak

Total Defects in
Linux Kernel

Total Defects in 5
Commercial
Implementations

April 2003 - Reasoning, Inc 14

Feedback Linux DeveloperFeedback Linux Developer

On OOB access:
– Nope, not wrong, the table is indexed off-by-one.

If you were right, rtnetlink would simply not work.
On NPD:
– In the cases where SKB is NULL, opt is never

NULL, check the two callers.
On ML:
– Fixed in the subsequent release.

April 2003 - Reasoning, Inc 15

Feedback Commercial DeveloperFeedback Commercial Developer

For the Linux community to just shrug
these off with "well the kernel works so
it must be ok" doesn't really cut it. I
think the NULL dereference checks should
be added, and definitely the out of
bounds array checking [..] For example,
the out of bounds array reference could
start causing a problem by just
rearranging the order variables are
declared.

April 2003 - Reasoning, Inc 16

Fix RatesFix Rates

12.518Linux Kernel
2.4.19

75.3235312Commercial
Implementations

%RepairedReported

April 2003 - Reasoning, Inc 17

Metrics ComparisonMetrics Comparison

0.00

0.20

0.40

0.60

0.80

1.00

1.20

D efects
per

K LS C

Industry Average Linux K ernel
2.4.19

C om m ercial
TC P /IP

D e fe ct D e n sity C o m pa riso n

W ors t Third

M iddle T hird

B est Third

– Linux stack: 0.10
– Commercial stack: 0.55

April 2003 - Reasoning, Inc 18

More Research Needed
– Initial defect densities of Open Source vs. Commercial?

Preliminary HypothesisPreliminary Hypothesis

– Defect removal rates of Open Source projects

N
um

be
r o

f D
ef

ec
ts

Time

Peer Review

?

Commercial TCP/IP

Linux 2.4.19 TCP/IP

April 2003 - Reasoning, Inc 19

ConclusionsConclusions

Open-source is not inherently worse
More research is required
Code inspections still find critical defects
in extremely well tested software

April 2003 - Reasoning, Inc 20

New resultsNew results

Apache test
– Httpd 2.1-dev (development version 01/31/03)
– Will determine, track, and report on defect

density through lifecycle
– Results on www.reasoning.com

Java implementation
– Tomcat Jakarta
– Results on www.reasoning.com (soon)

What else would you like to see?

April 2003 - Reasoning, Inc 21

New resultsNew results

Apache implementation
– Httpd 2.1-dev (development version from 01/31/03)
– 31 Defects in 59 KLOC; density 0.53
– Normal defect density; non typical defect distribution

April 2003 - Reasoning, Inc 22

New resultsNew results

Java inspections:
– Out of Bounds Array Access
– NULL pointer dereferences
– String Comparison

Jakarta Tomcat 4.1.24:
– 11 Defects in 71 KLOC; density 0.15 (Java average

commercial software is 0.16).
– Wait for feedback from the community
– Next inspection will include resource leaks

April 2003 - Reasoning, Inc 23

Towards discussionTowards discussion

OK, nice “hobby horse” for Reasoning and
others for research on test efficiency:
– See SPIder News for a Stanford study on Linux
– Les Hatton has compared Linux and CMM level

Ownership:
– Who finds the bugs ?
– Who fixes the bugs ?

“Open” source:
– Will commercial end-user will actually make

changes to the source ?
– Who will actually review the source (e.g. for quality

of the algorithms / security) ?

April 2003 - Reasoning, Inc 24

Discussion !!!Discussion !!!

