
Whitepaper

Atos Origin vision on MBT
by Elise Greveraars

MODEL BASED
TESTing...
tester needed? No thanks, we use MBT!

2

Table of content

Introduction� 4

The present situation of model based testing� 5
Introduction� 5

Purpose and definition� 5

Informal model based testing� 5

Formal model based testing� 8

Position of informal and formal MBT in the V-model� 10

Modelling� 11

 Model Driven Engineering (MDE) versus MBT� 11

 To reuse models or not to reuse models � 12

 Modelling guidelines � 12

Test generation criteria � 13

Test organization� 14

 In general� 14

 Test constructor � 14

 Traditional test roles/functions� 15

Market development� 16

 Tools� 16

 Adoption� 16

case studies & lessons learned� 17
Case study informal model based testing for review purposes� 17

 Lessons learned� 19

Case study formal model based testing � 19

 Lessons learned � 22

3

The future of model based testing� 23
Risk based test generation� 23

Business model based testing� 23

conclusions & recommendations� 26
Conclusions� 26

Recommendations to start using MBT� 26

references, links and further readings� 28

4

Atos Origin Nederland B.V. founded a working
Group in 2007 to learn more about Model Based
Testing (MBT).

The working group investigated 2 subjects,
namely:
1.	 The current situation on MBT
2.	 The use of MBT for testing business
processes and chains

To investigate the current situation regarding
MBT, Atos Origin Nederland B.V. has performed
a case study in cooperation with Smartesting®1,
Borland2 and HP3. To investigate the use of
MBT for testing business processes and chains
Atos Origin Nederland B.V.4 has started an
investigation project in cooperation with Laquso5
and Smartesting.

The information in this paper is the outcome of
the working group. The focus for using MBT in
this white paper is that of functional black box
testing for administrative systems using test
models that describe the expected behaviour of
the System Under Test (SUT).

This white paper will go into detail regarding the
current state of MBT and its future. It will explain
what MBT is, and will provide an answer to the
question whether we will still need testers in the
future or if testers will be redundant once MBT
has been applied.

Introduction

5

test models are derived from the requirements.”

A distinction can be made between informal and
formal MBT. The difference between formal and
informal MBT is that formal MBT uses formal test
models that comply to certain standard modelling
rules while informal MBT doesn’t use formal
test models. Test cases can be automatically
generated from formal test models and must be
manually generated from informal test models.
Paragraph Informal Model Based Testing and
Formal Model Based Testing will explain informal
and formal MBT in more detail.

Informal model based testing

Often testers start drawing some sort of test
model while reading requirements. These test
models help to get a better understanding of
the requirements which are often only textual
documents.

When drawing these test models many questions
will arise. Sometimes because specifications
contradict each other, contain incorrect
information, are unclear or, even worse, not
present. By drawing test models and asking
questions, the tester will gain a good insight into
the system to be tested and the tester will help
the functional designer to get the specifications
right. Drawing such test models will help improve
the quality of the requirements and will assist in
finding defects at a very early phase. Creating
test models is also one of the first process steps
in informal model based testing, see Figure 1.

So what exactly are the process steps of informal
MBT?
Before starting to create test models it is
important to consider what functionality needs
to be modelled in which order. The answer to
this consideration can be found in the Risk
Analysis (RA)7. The RA should be the basis

Introduction

Model based testing has become a very popular
term within the last few years. It is best known in
the world of embedded systems. But what is the
added value of MBT in the administrative world
and what is needed to start using MBT?

This chapter will explain more about the present
situation of MBT.

Purpose and definition

In general the idea of MBT is to create functional
test models based on requirements. The
requirements are thoroughly reviewed by creating
test models. Once created, these test models are
used for generating test cases. Generated test
cases can be used for manual and/or automated
test execution.

The definition of MBT in Wikipedia6 is the
following:
“Model-based testing is software testing in which
test cases are derived in whole or in part from a
model that describes some (usually functional)
aspects of the system under test (SUT).“

This definition indicates that the only purpose
of model based testing is to derive test cases
from a test model. However the creation of test
models also has substantial added value as an
activity of a review process.

For this reason the definition of MBT can be
refined to:
“Model-based testing is software testing in which
a functional test model is created that describes
some of the expected behaviour (usually
functional) of the system under test (SUT). The
purpose of creating this test model is to review
the requirements thoroughly and/or to derive test
cases in whole or in part from the test model. The

The present situation of
model based testing

6

of test models used for informal model based
testing doesn’t have to comply with certain
modelling rules. The only rule for modelling is that
the test models to be created are readable for
the parties/persons involved in testing. Parties
or persons involved can be for example other
testers, functional designers, end users etc.
These parties will have to determine themselves
what is a readable form. Any tool which can
create test models can be used for informal
model based testing. An example of an informal
test model is Figure 2.

for each test project. It contains information
about which specifications have a high risk
score for a certain version of the system. Based
on this information a choice can be made
on what to model, for example only model
the highest risks requirements or model the
highest risks requirements first and the lower
risks requirements later. The creation of a RA is
preferably done in the business analysis phase
but is possibly performed later.

Once the risk information is clear the modelling
can start, see step 1 in Figure 1. The notation

Figure 1: Process Steps informal model based testing

7

During the creation of test models incorrect,
unclear or missing specifications will be found.
This information should be registered, monitored
and communicated to the parties involved, see
step 2 in Figure 1. When needed the specification
should be updated and released. After each
release of the specifications the test models need
to be screened and adjusted.

Once the specifications and the test models are
approved by the parties involved, the design
of the test cases can commence, see step 3
in Figure 1. The test models will be used as a
guideline for designing the test cases and will
give the test designers a good overview of test
cases to be designed. The design of test cases is
a manual action when using informal MBT.

In general test cases will be stored in a test
management tool to be executed manually, see
step 6 in Figure 1 or they will be adapted for
automation test cases, see step 4 in Figure 1, to
be executed automatically, see step 5 and 6 in
Figure 1.

Figure 2: informAL MODEL

8

When using formal MBT it is not an option as
with informal MBT to let the parties involved
determine how the notation of a test model
should appear. Accurate test models should be
designed and formal rules should be followed
for modelling. This way the test generation tool
can check and interpret the test models and
transform them into test cases. An example of a
formal test model is Figure 3.

An example of a formal modelling notation is
UML but many other modelling notations exist8.

So what exactly are the process steps of formal
MBT?
As with informal MBT it’s important to consider
what functionality needs to be modelled and in
which order. This information should be extracted
from the Risk Analysis (RA). Based on this
information a choice can be made for example
to only model the highest risks requirements or
to model the highest risks requirements first and
the lower risks requirements later, see step 1 in
Figure 4.

Formal model based testing

One of the biggest advantages of formal MBT
is the possibility to automatically generate test
cases based on test models. To automatically
generate test cases a tool is needed which
should be able to interpret the test models.

Figure 3: FORMAL MODEL

9

monitored and communicated to the parties
involved, see step 2 in Figure 4. In formal MBT
the test models will be offered to the model
based solution tool for simulation. By simulating
the test model the specifications will also be
evaluated, see step 3 in Figure 4. Simulation also
helps in finding interpretations defects which
are possibly introduced by designing the test
model. The findings of the simulation should be
registered, monitored and communicated to the
parties involved.

The test models to be designed must be formal
and accurate. To be able to design such test
models more sophisticated modelling tools
are needed, for example Borland Together or
IBM Rational Software Modeler. Sometimes
model based solution tools9 also offer modelling
functionality. In this white paper the assumption
is made that a separate tool is used for modelling
purposes.

During the modelling phase incorrect, unclear
or missing specifications will be found. These
specification defects need to be registered,

Figure 4: Process steps formal model based testing

10

Position of informal and formal MBT in
the V-model

This paragraph will describe the position of
informal and formal MBT in the V-model10. The
V-model shows the relationships between each
phase of the development life cycle and its
associated phase of testing, see Figure 5.

In the problem domain the wishes, opportunities,
problems and policies are identified. These
will be converted to a solution in the solution
domain. The solution domain can be split up in a
functional and technical domain.

Informal MBT can be used for both the functional
domain and the technical domain within the
solution domain. It will probably be used most
in the functional domain for system, system
integration and acceptance testing.

Test models as created in formal MBT are mostly
based on the system requirements, see Figure 5.
This makes formal MBT most suitable for system
and integration testing. Formal MBT is less
suitable for acceptance testing since acceptance
testing should be based on user requirements.
However parts of the test cases generated by
MBT can possibly be re-used for acceptance
testing.

The most common kind of testing with MBT
in general is functional testing but can also be
some kinds of robustness testing11. Automated
test cases generated from formal models can
possibly also be used for performance testing.
MBT is less useful for usability testing.

The specifications and test models will have to
be fine tuned based on the findings and will have
to be approved by parties/persons involved in
testing and capable of understanding the formal
test models. Parties or persons involved can be
for example functional designers.

Once the test models are designed and approved
the model based solution tool can generate the
logical test cases, see step 4 in Figure 4.

The generated test cases can be for example
HTML or XML output. Some model based
solution tools also offer a plug-in for a test
management/execution tool to make it possible
to directly import test cases into the test
management tool, see step 5 in Figure 4. The
generated test cases will be logical test cases to
be used for manual execution and a framework
with automated test cases

The generated logical test cases can be adapted
to physical test cases by mapping test data, see
step 6 in Figure 4 after which the test cases can
be executed manually see step 9 in Figure 4.

To automatically execute test cases the
generated framework of automated test cases
should be adapted, see step 7 in Figure 4. The
generated test cases are abstract test cases
and should be made concrete to make them
executable. So for example abstract field names
should be mapped to real field names used
in the system, test data should be mapped
to test cases etc. The adapted test cases will
be administered in the test management tool,
see step 8 in Figure 4 and can be executed
automatically, see step 9 in Figure 4.

11

from the models, ranging from system skeletons
to complete, deployable products. With the
introduction of the Unified Modelling Language
(UML), MDE has become more popular.

MDE and MBT are both seen as the next step
in the evolution of software development and
are both based on the modeling of business
processes, systems and programs as a primary
form of development and testing. However, the
purpose of models in MDE and MBT differ. The
purpose of MDE is to produce code while the
purpose of MBT is to produce test cases.

The content of the models created for MDE and
MBT also differ. MDE models contain technical
information that is needed for the production of
code. This information is not needed for creating
test cases. For this reason MBT test models
should only contain functional information.

Modelling

This paragraph will give some background
information on Model Driven Engineering (MDE)
versus MBT and on how to deal with modelling
when starting MBT.

Model Driven Engineering (MDE) versus MBT
Having some more background information on
MBT let’s have a look on how MBT is related to
MDE.

What exactly is MDE12? MDE refers to a range
of development approaches that are based
on the use of software modelling as a primary
form of expression. Sometimes models are
constructed to a certain level of detail, and then
code is written by hand in a separate step.
Sometimes complete models are built including
executable actions. Code can be generated

Figure 5. Position of formal MBT in V-model

12

that only contain information about the structure
of the system are called static models. Possibly
the available MDE models are only static models
or dynamic models. In this case the missing
models should be created.

Another option to reuse models is to make
use of models created by reverse modelling an
operational system. These models can possibly
be used to create a regression test set to check
if the functionality that is working in the current
situation, will still be working in a situation in
which certain parts of the system are updated.
The updated parts should be modelled separately
but the parts that have not been changed could
be tested with test cases generated from the
reverse models. When reusing reversed modelled
models it is again very important to strip all
irrelevant information from the models and to
make sure static and dynamic models exist to be
used for test generation.

When reusing MDE models there is no or little
independency between implementation and
testing. This and the fact that models should
be customized for test purposes can be
disadvantages of reusing models.

Combinations of the solutions mentioned are also
possible for modelling.

Modelling guidelines
What are some useful guidelines for modelling?
First of all you have to choose a model notation
for your test models. The choice of the model
notation can be based on several aspects. One
aspect that can influence this decision is that
the company or the project prescribes or has a
specific preference for test models to be used. In
this case it is essential to look for a model based
solution tool that supports these kinds of test
models.

To reuse models or not to reuse models
So, can MDE models be reused for MBT
projects? The answer to this question depends
on the settings of the project worked on.

When there are no models available for the
project, test models should be created from
scratch. The advantage of creating test models
from scratch is that the test model can be fully
customized for test purposes. Another big plus
is the fact that the test models to be created
are not used to generate code. This gives total
independency between the implementation
and the testing. A down side of creating test
models from scratch is the fact that nothing can
be reused. The setup of initial test models often
takes much time.

When working on a project that is applying MDE,
models can possibly be reused for MBT. Reuse
is only possible when the MDE models are not
used to generate code. Any functional error in
the model will generate incorrect implementation
code and the generated test cases will contain
the same error. The design of the system and the
design of test cases should be as independent as
possible13.

When reuse is possible it is important to
customise the models for test purposes and
to review the models thoroughly with the
specifications. As mentioned before the content
of MDE and MBT models differ. For this reason
all irrelevant information must be striped from the
MDE models. Irrelevant information is for example
implementation information and information that
is not identified as a high enough risk to model.

To be able to create useful test cases it is
important to model the expected behaviour of the
system and the structure of the system. Models
that contain information about the expected
behaviour are called dynamic models; models

13

test cases that will meet the test objectives,
the model based solution tools will use certain
generation criteria.

The generation criteria to be used depend on
the test model and model based solution tool to
be used. In the following example a finite state
diagram will be used as a test model, see Figure
6. The model based solution tool can for example
use the following generation criteria to create test
cases:
•	 State coverage
Test cases will be generated that will visit every
state in the model at least once. In the example
of Figure 6, two test cases will be generated to
meet this criterion. The test cases can be for
example the following transition combinations: A,
B and C, D, G.
•	 Transition coverage
Test cases will be generated that browse every
transition in the model at least once. In the
example of Figure 6, three test cases will be
generated to meet this criterion. The test cases
can be for example the following transition
combination: A, B and A, E, F, G and C, D, G.
•	 All transition pairs
Test cases will be generated that will combine all
incoming transitions with all outgoing transitions
in a state. In the example of Figure 6, five test
cases will be generated to meet this criterion.
The test cases can be for example the following
transition combination: A, B and A, E, F, G and A,
E, G and C, D, F, G and C, D, G.

 Other aspects that can influence the decision
are the available model based solution tools.
The model notation to be chosen should be
supported by a model based solution tool.

Once the model notation is chosen it’s important
to consider what functionality needs to be
modelled in which order, also see paragraph
Informal Model Based Testing and Formal Model
Based Testing.

When starting to model keep in mind that
the purpose of the test model is to generate
functional test cases. For this reason the model
should only contain functional information and
no technical and/or implementation data. Model
only functionality that needs to be tested, the test
model does not have to specify all the behaviour
of the system.

The test models to be created will describe
the structure of the system and the expected
behaviour of the system. The test models to be
designed should be accurate enough for testing
the desired functionality but should also have a
reasonable size and should be easy to maintain14.
These two goals can be in conflict at times. The
person responsible for designing the test model
should be capable to decide what should be
modelled to satisfy the test objectives and how
much detail is useful.

Test models can make use of parameters to
represent test data. These parameters can be
replaced for actual test data after the test cases
are generated.

Test generation criteria

The previous paragraph described the design of
test models. When using formal MBT the model
based solution tool will use the test models to
generate test cases. To be able to generate

Figure 6. Finite state diagram

14

Test organization

This paragraph will give more background
information on the impact MBT can have on
the current test organisation. A new role will be
introduced; the test constructor role and the
impact on the traditional roles will be described.

In general
When applying MBT it is very important to have
the commitment of all parties, this includes
management. MBT requires an adapted way of
working from the traditional testing. Test models
will have to be designed in an earlier phase of the
project compared to the traditional design of test
cases.

By designing test models the testers are able
to formulate critical questions early. The issues
raised by the testers will help the functional
designer in writing correct requirements. For this,
much interaction will be needed between the
functional designer and the tester. Management
will have to support and propagate this way of
working. They will also have to invest in training
and possibly in tooling; commitment is essential.

Test constructor
Model based testing requires additional skills
to traditional testing skills. Required skills are
modelling skills, skills on transforming written
specifications into models and a basic knowledge
regarding programming. For this reason a new
role or function is introduced for MBT, the test
constructor.

According to Wiktionary16 a constructor is a
person who:
Builds or forms by assembling parts and draws
models by following precise specifications and
using geometric tools and techniques.

Test cases can also be generated on the basis
of test data generation criteria. These criteria
will choose data values as test inputs. The data
values will be chosen for example on basis of
boundary values, random values, equivalence
class values, etc.

The test generation criteria mentioned here are
only a few examples, many other generation
criteria exist15. Generation criteria can also be
combined in order to generate test cases.

As can be seen in the example of the finite state
diagram the generation criteria will control the
choice of tests and determine the depth and size
of test cases. The depth and size of test cases
generated with the generation criterion ‘state
coverage’ is less than when using for example
the generation criterion ‘all transitions pairs’.

The generation criteria to be used should depend
on the risk score of the modelled requirement.
The generation criteria for a high risk requirement
must be more extensive than the generation
criteria for a low risk requirement. In the current
situation model based solution tools do not yet
support the control of generation criteria.

15

It is the responsibility of the test constructor to
choose a good level of abstraction to satisfy the
test objectives.

Traditional test roles/functions
Traditional test roles or functions will still
be needed when introducing MBT into the
organisation. To use MBT it is important for the
traditional roles to gain general knowledge on
MBT, modelling and tooling.

In addition to gaining this knowledge the test
manager will have to integrate MBT into the test
strategy of the company.

The person responsible for the test automation,
the test automater role or function, will play
an important role in adapting the generated
automatic test cases to executable test cases. In
order to do so, he or she will have to gain more
knowledge of the MBT tooling and the generated
automatic test cases.

MBT takes over (parts of) the role or function of
the test designer. However the test designer can
also play a role in the functional modelling and
will be needed to design test cases which are not
covered by MBT.

The test executer will be responsible for
executing the manual test cases which may or
may not have been generated by MBT.

An example of work of a constructor is shown in
Figure 7.

Based on this definition, the definition of a test
constructor is:
A test constructor is a person who builds or
forms the necessary test models by following
precise specifications, using a good level of
abstraction for test purpose and using tools and
techniques for modelling and the generation of
test cases.

The test constructor should have domain and
testing knowledge. He or she will have much
interaction with the different parties involved in
the project to cross check the models with the
available information. For this reason the test
constructor should also have good social skills.

The test constructor should be involved in the
test project as early as possible. By designing
test models early in the process, many defects
can be found before one line of code has been
written.

Figure 7: a CONSTRUCTION

16

on the supported models.

Adoption
The majority of testers are already applying
some form of informal MBT. As with MDE19
the adoption of formal MBT is still in the early
adopter’s phase of the technology adoption
lifecycle model20, see Figure 8. The technology
adoption lifecycle model describes the adoption
or acceptance of a new product or innovation,
according to the demographic and psychological
characteristics of defined adopter groups. Early
adopters are in general young and educated
people tended to be community leaders.

The gap between the early adopters and the
early majority still needs to be crossed. This gap
is also called the chasm21. The early majority are
in general more conservative people who are
open to new ideas, are active in the community
and can influence neighbours.

Market development

This paragraph will give information about the
current market development concerning model
based solution tools and about the current
adoption phase of MBT.

Tools
There are already many commercial and non
commercial MBT tools on the market17. The
purpose of these tools is to generate test cases
based on test models. Some tools also support
modelling functionality and/or test execution
functionality.

The test tools can be grouped in online and
offline model based testing tools18. Offline model
based testing tools will generate a finite set of
tests to be executed later. This allows automatic
test execution in third party test execution
platform. Online model based testing tools will
connect directly to a system under test and test it
dynamically. Online model based testing tools are
common in the embedded industry while offline
model based testing tools are more common in
the administrative domain.

The different tools available support different
models notations like for example UML, OCL,
B notation, Spec#, FSM, etc. Some tools also
offer plug-ins for modelling tools like for example
Borland Together or IBM Rational Software
Modeler. This plug-in will check the consistency
of models.

Each tool provides its own test case output.
Test cases are generated as HTML, XML, ASCII,
Comma Separated, TTCN-3 output etc. Some
tools also offer plug-ins like for example exporting
test cases to HP Quality Center, etc.

Different generation criteria are used by different
tools. The used generation criteria also depend

Figure 8: TECHNOLOGY ADoption lifecycle

17

When evaluating the types of specification
defects in version 2, the following types of
specification defect were found:
•	 Functional defects
•	 Defects about unclear specifications
•	 Textual defects

This chapter will describe the results of 2 case
studies. In one case study informal test models
were designed and used for review purposes,
the second case study is a formal MBT project to
gain experience on MBT.

Case study informal model based
testing for review purposes

In this case study a comparison is made of
specification defects found in two versions of
a newly built application. Both versions were
designed by the same functional designer and
had been previously informally reviewed.

Based on function points both versions are of
an equal size. For version 2 informal test models
were created as part of the activity intake test
basis, for version 1 no test models were created.

The results of this case study show that in version
one out of all defects 11% were specification
defects found prior to testing, see Figure 9.

In version two out of all defects 26% were
specifications defects found prior to testing, see
Figure 10.

case studies & lessons
learned

Figure 9: Specifications defects in version 1

Figure 10 Specifications defects in version 2

18

few specification defects were not found when
creating the test models for version 2. The
specification defects that were not found related
to screen specifications which were not well
defined and with unclear specifications. The

The production severity of the specification
defects found ranged from blocking to cosmetic
as can be seen in Figure 11.

At the end of the case study we found that a

Figure 11: specifications defects found by modelling

Figure 12: specifications defects found by modelling

19

Case study formal model based testing

The purpose of this case study was to gain
knowledge on formal MBT and to judge the
usability of formal MBT. The case study was
performed in cooperation with the model based
solution supplier Smartesting.

For this case study a team of test specialists
was formed and trained in 3 weeks on formal
modelling and tools to be used. The approach
used was incremental and iterative, starting small
and simple and expanding gradually. By applying
this approach the team could quickly get an
impression of using MBT and gradually gain
knowledge on the test models to be designed
and tooling to be used.

The following tool combination was used, see
Figure 13:
•	 Borland Together 2006 release 2 for
Eclipse; to design the test models
•	 Smartesting Testdesigner; to evaluate the
correctness of test models and to generate the
test cases
•	 HP Quality Center; for test management
functionality
•	 HP QuickTest Professional; to adapt and
automatically execute the generated test cases

unclear specifications were cosmetic issues.
Because it is not possible to model the screen
specification, it was not surprising that these
specification defects were missed.

Lessons learned
One of the lessons learned during this case study
was that it is very useful to create test models to
support the review process. A lot of missing and
unclear specifications were identified early. Some
time had to be invested for the creation of the
test models but this time paid dividends in the
later phases due to the knowledge the tester had
gained early on by creating the test models. This
knowledge was very useful to the testers during
the design and execution of test cases.

Another lesson learned was that it is important
to start modelling during the review process and
not as part of the activity intake test basis. At
this stage the functional designers do not want
to review the created test models anymore.
They consider this as double work as the
specifications have been finalised. When starting
to model during the review sessions more
commitment can be expected from the functional
designers on reviewing the test models.

Figure 13: TooL combination

20

•	 State diagram, see Figure 16
A state diagram describes all possible states of
a system and the transitions needed to reach a
certain state.

The following UML model notations were used
for the case study and supported by Smartesting
Test designer:
•	 Class diagram, see Figure 14
Class diagrams describe the relations between
entities like for example people, things and
data and describe the attributes and possible
operations of the entity.

 •	 Object diagram, see Figure 15
An object diagram shows a subset of elements
from the class diagram. This subset describes
the relation and value at a specific point in time.
The object diagrams are used in MBT to describe
the initial state to use for generating test cases.

Figure 14. Class diagram

Figure 16. State diagram

Figure 15. Object diagram

21

The conditions needed for a transition to take
place are described in the pseudo language
Object Constraint Language (OCL), see Figure
17.

For the generation of test cases Smartesting
Test Designer supports the following generation
criteria:
•	 Transition coverage
•	 Each condition in the decisions (D/CC
criteria) coverage
•	 One data value per equivalence class
coverage

Figure 17: ocl CODE

Figure 18: aN EXAMPLE OF A GENERATED TESTCASE

The first generation criterion is based on the state
machine, the two other generation criteria are
based on OCL.

Figure 18 shows an example of a generated test
case. This test case will first search for a valid
product to order. The user should login before
ordering. In this test case an invalid user name is
provided that will result in an error message.

22

scripts can also provide extra work which may
not have been needed. Currently, the only option
to reduce the number of generated test case is to
reduce the modelling of requirements.

The naming and the readability of the generated
test cases still have room for improvement. The
test name for example doesn’t contain enough
information about the test case, see Figure 18.
This issue was improved after finishing the case
study.

The tool Test designer from Smartesting was
found easy to use. The tool also supports the
usage of references to requirements in the
test models. These requirements with linked
test cases generated from the test model are
administered in HP Quality Center. This makes
traceability possible between the test models,
requirements, test cases and test execution.

In general MBT can certainly help to improve the
test process and test results. Savings in time and
money are expected once the people are trained
in modelling and initial test models are designed.

Lessons learned
The case study was very successful in gaining
knowledge of MBT. The testers were very
enthusiastic to learn about MBT. For them MBT
was a new and exiting challenge. They found
modelling to be a very creative task which could
be learned easily when education in modelling
and tools is provided. In order to design the test
models correctly much interaction was needed
with other parties.

The test models gave the testers a better
overview than the textual specification and were
very useful in communicating with functional
designers. However, knowledge is needed to
understand the test models. For this reason
the test models used are not considered to be
business user friendly.

The test generation did save a lot of time on
designing test cases manually. The greatest
added value of MBT is to be gained when using
test automation. Beside manual test cases
Test Designer of Smartesting will automatically
generate a framework of automated test cases
which will reduce the time to create/design
automatic test cases significantly.

At the start of the case study time was required
to design the test models. The initial set-up of
the test model was more time consuming than
updating the test models. The advantage of
creating test models in an early phase is the early
detection of specification defects.

Unfortunately it is not possible yet to make a
difference in the test generation for high or low
risks requirements. Currently test cases are
generated from the requirements as if they all
have the same risk level. When executing test
cases manually, this means that the test cases
have to be sorted out by hand. The selection
of test data and adaptation of automated test

23

Besides this it must be possible to generate test
cases based on probabilities. Figure 19 shows a
state diagram in which the following 3 transition
paths are possible; A, B and A, E, F, G and C, D,
G. The probability will express the likelihood of
a transition path to be used. The probability can
be for example 15 % for the transition path A, B,
25 % for the transition path A, E, F, G and 60%
for the transition path C, D, G. For the creation
of test cases it should be possible to take this
probability factor into account.

The expectations for the future are that more
model based solution suppliers will solve this
issue by providing the functionality of some sort
of dash board in which the test manager can
control what generation criteria are used for what
risk of a requirement and in which he or she
can control the test case generation based on
probabilities.

Business model based testing

In the current situation, formal MBT is mainly
based on system requirements and test models
that describe these system requirements. This
makes it less or not suitable for acceptance
testing, see Position Of Informal And Formal
MBT In The V-model. In the acceptance test the
accepting party (also called demanding party)
wants to determine whether what has been
asked for is actually being delivered and whether
it can do with the product what it want to/must
do22. The accepting party must verify if the
product provides the necessary support to the
business process.

This chapter will describe some developments
to be expected in the future. One of the
developments is risk based test generation, the
other development is business model based
testing in which testing can be applied on
acceptance level.

Risk based test generation

It would be very useful to be able to control the
generation criteria for generating test cases in
link with the level of risk of the tested functions or
requirements. This in not currently available in the
model based testing tools.

The test manager/coordinator must be able to tell
the model based solution tool for example to:
•	 Generate test cases based on the
generation criteria ‘all transition pairs’ and on the
test data generation criteria equivalence classes
for high risk requirements
•	 Generate test cases based on the
generation criterion ‘state coverage’ and to use
random values as test data generation criteria for
low risk requirement

The future of model based
testing

Figure 19. Probabilities in a finite state
diagram

24

By applying BMBT aspects of the business
processes will be validated and verified. Now
what do we mean by a business process? One
of the definitions is23:
A business process is a collection of activities
that takes one or more kinds of input and creates
an output that is of value to the customer.

The activities of a business process mentioned
in the definition are often a combination of
manual and automated processes. The manual
processes are being executed by clients,
employees or others and are supported by
software solutions. The automated processes
are being executed by software solutions.
Dependencies exist between the activities in
a business process and between the different
business processes.

To be able to use MBT for acceptance testing,
test models must be based on the user
requirements and business requirements. The
test models must describe business processes
and end-to-end testing and must be readable for
the business users. To bridge the gap between
the usage of the current MBT and to use MBT
for acceptance testing, Business Model Based
Testing (BMBT) will be introduced. Figure 20
shows the position of BMBT in the V-model.

What exactly is BMBT?
Business model-based testing (BMBT) is
business process and software testing in which a
test model is created that describes aspects of
the business process including the system under
test (SUT). The purpose of creating this test
model is to review the requirements thoroughly
and/or to derive test cases in whole or in part
from the test model.

Figure 20. Position of formal MBT in V-model

25

For BMBT the same distinction as with MBT can
be made between informal and formal BMBT.
For formal BMBT test models must be used that
comply to certain standard modelling rules such
as the Business Process Modelling Notation
(BPMN)24. At this moment, it is not possible
to apply formal BMBT since no model based
solution tools exist that support the simulation
of the test models and the generation of BMBT
test cases. Simulating the test models will help in
checking the correctness of the test models and
business processes.

Since a business process is a combination of
manual and automated processes, manual and
automated test cases will exist in parallel in the
future of formal BMBT.

Informal BMBT does not have to comply with
a standard modelling notation and can already
be applied at present since no special test case
generation tooling is needed. The generation of
test cases will be done manually.

The test models designed for both formal and
informal BMBT will be used as input for the
design of test models for MBT. The test models
are supplementary to each other.

Currently Atos Origin Nederland B.V. is already
applying informal BMBT in their test method
Business Process Validation25. Formal BMBT
is being further developed by Atos Origin,
Smartesting and Laquso.

An example of a business process and possible
dependencies:
A customer in the USA places an order via
internet in dollars. When the shipment is worth
more than € 700 import duties will have to be
paid and customs will have to provide papers
for this shipment. The exchange rate lists will
be updated hourly. So for the customer in the
USA, shipment terms depend on the exchange
rate lists and its update process. The behaviour
of the client can also depend on the changes
in this exchange rates list. If the dollar rate is
unfavourable, the client can decide to cancel his
order.

The test models used in BMBT will describe
these business processes and the dependencies
of these business processes. The visualisation in
a test model will help improve the quality of the
business and user requirements in a very early
phase. It will make business owners more aware
of the consequences of certain choices that have
been made.

In the example given above it is possible that the
business owner becomes more aware of the fact
that the client may cancel his order due to the
shipment terms. Based on this information the
business owner might decide to offer a discount
or to divide the shipment to avoid the shipment
terms.

The test models designed in BMBT will also be
used to generate test cases for the acceptance
testing. The generated test cases will be used to
test if business processes and chains are working
correctly. Because of the different scope of MBT
and BMBT different type of defects will be found
when executing the test cases. BMBT testers will
detect defects which traditional testing would not
have found.

26

initial test models are designed. Because of
this the adoption of formal MBT will continue to
increase. Besides this growth there will be an
increasing need for business model based testing
which can be applied on acceptance level.

Recommendations to start using MBT

So now you want to start using MBT, how to best
start?

Informal MBT can always be used. Tooling to
design test models for example will be handy but
are not required for informal MBT. First try to find
out what are the most important requirements.
Once these are clear start reading the
specifications and just start creating test models.
Be surprised by the questions that will arise and
the knowledge that will be gained by doing so.
Once these test models exist, discover how easy
it is to use them as the basis for designing the
test cases.

A first step can also be to start a small project to
gain experience on formal MBT. This will require
the necessary tools like a modelling tool, an MBT
tool for the generation of test cases and test
management and execution tooling. Decide what
model notation to use and make sure the people
who will work on this project will get a proper
training in modelling, MBT and tooling.

Start modelling as early as possible in the
project and start to model simple functionality
to gain experience. Gradually more complex
functionality can be modelled. Test models can
get complex when not applying the correct level
of abstraction. For this reason it is important
to design test models that contain enough test
information but will stay relatively small at the
same time.

This chapter will describe the conclusion on MBT
and some recommendations on how to best start
using MBT.

Conclusions

Testers will certainly still be needed when using
MBT. To use MBT those executing the traditional
roles or functions will have to be educated on
modelling, MBT and tools used. A model based
test designer, the test constructor, will be needed
in addition to the traditional roles or functions.

By designing test models knowledge is gained
on the system and defects are found at a very
early stage. This will reduce much development
and testing time. The test models are very useful
for the creation of test cases. This is the case
for formal and for informal test models. Formal
models are partically useful since these can be
used for automated test case generation. It is
important to model risk based, so start modelling
the high risk requirements.

Formal MBT will heavily reduce the maintenance
on test cases; this is especially the case when
applying automated testing. Instead maintenance
on test models will be needed. Maintaining test
models will be by far less time consuming than
maintaining large test repositories.

Formal MBT will provide very high test coverage
but unfortunately it is not possible yet to generate
test cases risk based. Model based solution
providers will probably implement risk based test
generation in the near future.

In general MBT can certainly help to improve the
test process especially on the level of system
testing and system integration testing. Reduction
in time and costs are to be expected once the

conclusions &
recommendations

27

When applying MBT always create test models
based on the risks of the requirements. Consider
if regression tests are to be expected for certain
functionality. If no regression is to be expected it
might not be useful to invest substantial time in
the initial set up of a formal test model. On the
other hand take into consideration that investing
time in creating the test model will help to find
specification defects in an early phase.

And last but not least; hop on board and get
enthusiastic!!

28

11Practical Model Based Testing, a tools
approach, Elsevier Science & Technology
2006, ISBN10: 0123725011, ISBN13:
9780123725011, Mark Utting and Bruno
Legeard, paragraph 1.1. What do we mean by
testing?

12Wikipedia, model driven engineering:
http://en.wikipedia.org/wiki/Model-driven_
engineering

13Practical Model Based Testing, a tools
approach, Elsevier Science & Technology
2006, ISBN10: 0123725011, ISBN13:
9780123725011, Mark Utting and Bruno
Legeard, paragraph 2.3. Models: Build or
borrow?

14Practical Model Based Testing, a tools
approach, Elsevier Science & Technology
2006, ISBN10: 0123725011, ISBN13:
9780123725011, Mark Utting and Bruno
Legeard, paragraph 1.2. What is model based
testing?

15Practical Model Based Testing, a tools
approach , Elsevier Science & Technology
2006, ISBN10: 0123725011, ISBN13:
9780123725011, Mark Utting and Bruno
Legeard, chapter 4. Selecting your tests

16Wiktionary, constructing:
http://en.wiktionary.org/wiki/construct

17List of commercial MBT tools:
http://www.cs.waikato.ac.nz/~marku/mbt/
CommercialMbtTools.pdf

1Smartesting, a model based solution provider:
http://www.smartesting.com

2Borland, an international IT products and
solutions provider:
http://www.borland.com

3HP, an international IT products and solutions
provider:
http://www.hp.com

4Atos Origin Nederland B.V., an international IT
services provider:
http://www.nl.atosorigin.com

5Laquso, laboratory for quality software
http://www.laquso.com

6Wikipedia, model based testing:
http://en.wikipedia.org/wiki/Model_based_testing

7TMap Next for result-driven testing, UTN
pubishers 2006, ISBN10: 9072194802, ISBN13:
9789072194800, Tim Koomen, Leo van der
Aalst, Bart Broekman, Michiel Vroon

8Practical Model Based Testing, a tools approach,
Elsevier Science & Technology 2006, ISBN10:
0123725011, ISBN13: 9780123725011, Mark
Utting and Bruno Legeard, paragraph 3.1.1.
Notations for modelling

9Tooling that will validate test models and will
generate test cases.

10TMap Next for result-driven testing, UTN
pubishers 2006, ISBN10: 9072194802, ISBN13:
9789072194800, Tim Koomen, Leo van der
Aalst, Bart Broekman, Michiel Vroon, paragraph
2.3.3

references, links and
further readings

http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wikipedia.org/wiki/Model-driven_engineering
http://en.wiktionary.org/wiki/construct
http://www.cs.waikato.ac.nz/~marku/mbt/CommercialMbtTools.pdf
http://www.cs.waikato.ac.nz/~marku/mbt/CommercialMbtTools.pdf
http://www.smartesting.com
http://www.borland.com
http://www.hp.com
http://www.nl.atosorigin.com
http://www.laquso.com
http://en.wikipedia.org/wiki/Model_based_testing

29

18Presentation Model based testing tools by
OlliPekka Puolitaival, VTT Technical Research
Centre of Finland, presented at ECMDA-FA, june
2008, Berlin:
http://www.cs.tut.fi/tapahtumat/testaus08/Olli-
Pekka.pdf

19Keeping the Forest in View when Representing
and Manipulating Large-Scale Models by
Houari Sahraoui, DIRO, Université de Montréal,
presented at ECMDA-FA, june 2008, Berlin.

20Technology adaption curve:
http://en.wikipedia.org/wiki/Technology_
Adoption_LifeCycle

21Marketing book, Crossing the Chasm,
HarperCollins Publishers, ISBN10: 0060517123 |
ISBN13: 9780060517120, Geoffrey A. Moore

22TMap Next for result-driven testing, UTN
pubishers 2006, ISBN10: 9072194802, ISBN13:
9789072194800, Tim Koomen, Leo van der
Aalst, Bart Broekman, Michiel Vroon, paragraph
6.1

23Wikipedia, business process definition
http://en.wikipedia.org/wiki/Business_
process#Definition

24Wikipedia, Business Process Modelling notation
(BPMN):
http://en.wikipedia.org/wiki/BPMN

25Business Process Validation, Atos Origin 2007,
Klaas Smit & Gerlof Hoekstra

http://www.cs.tut.fi/tapahtumat/testaus08/Olli-Pekka.pdf
http://www.cs.tut.fi/tapahtumat/testaus08/Olli-Pekka.pdf
http://en.wikipedia.org/wiki/Technology_Adoption_LifeCycle
http://en.wikipedia.org/wiki/Technology_Adoption_LifeCycle
http://en.wikipedia.org/wiki/Business_process#Definition
http://en.wikipedia.org/wiki/Business_process#Definition
http://en.wikipedia.org/wiki/BPMN

	Introduction
	Introduction
	Purpose and definition
	Informal model based testing

	testing for review purposes
	Case study informal model based
	Market development
	Tools
	Adoption

	Test organization
	In general
	Test constructor
	Traditional test roles/functions

	Test generation criteria
	Modelling
	Model Driven Engineering (MDE) versus MBT
	To reuse models or not to reuse models
	Modelling guidelines

	Position in of informal and formal MBT in the V-model
	Formal model based testing
	Business model based testing
	Risk based test generation
	Case study formal model based testing
	Lessons learned

	Lessons learned
	conclusions &
	recommendations
	Conclusions
	Recommendations to start using MBT

	references, links and

