
1

Automated Reliability
Testing via hardware
interfaces

TestNet Najaarsevenement

Bryan Bakker

October 2011

© Sioux Embedded Systems | Confidential | 2

Contents

� Sioux

� Intro – The need for action

� Increment 1 – First success

� Buy-In from management

� Increment 2 – A language for the testers

� Increment 3 – Logfile interpretation

� ROI and Crow-AMSAA

� Results – key success factors

2

2

© Sioux Embedded Systems | Confidential | 3

About Bryan Bakker

� Test Expert

� Certifications: ISTQB, TMap, Prince2

� Member of ISTQB Expert Level on Test Automation

� Accredited tutor of ISTQB Foundation

� Domains: medical systems, professional security

systems, semi-industry, electron microscopy

� Specialties: test automation, integration testing, design

for testability, reliability testing

3

About Sioux

© Sioux Embedded Systems | Confidential | 4

HERENTALS

MOSCOW

NEDERWEERT

EINDHOVEN

UTRECHT

3

© Sioux Embedded Systems | Confidential | 5

Intro – The need for action

Medical Surgery Device:

� X-ray exposure + acquisition during surgery activities

� Real-time image chain

� Mobile device (frequently off/on)

� Quality and testing considered

important in organization

Reliability was an issue:

� “Frequent” startup failures

� Aborted acquisitions

� Always safe… but not reliable!

5

© Sioux Embedded Systems | Confidential | 6

The need for action

� Reliability issues are nasty to analyse, solve and test

� Fixing defects in field (remember Boehm)

� Impact on other projects (development + test resources)

� High service costs

� Troublesome system test (up to 15 cycles!!)

6

Requirements Design Implementation Test Operation

Cost of defect fix (Barry Boehm)

4

© Sioux Embedded Systems | Confidential | 7

The need for action

� Start with automated reliability tests (simple, short)

� Quick and dirty at first

� No SW resources available

� To help with automation

� Implementing test interfaces

� Goal: show (quick) that reliability issues can be

reproduced

� Expectation: … then attention and funding would
increase

7

� Hardware interfaces used to invoke actions on SUT

� Buttons on different keyboards

� Handswitches

� Footswitches

� Different power-switches

� LabVIEW generates hardware signals

� Test cases defined in LabVIEW

� Only logfiles stored, no other verification performed

� No software changes needed for this approach

Increment 1 – First success

© Sioux Embedded Systems | Confidential | 8

5

Increment 1 – First success

© Sioux Embedded Systems | Confidential | 9

Increment 1 – First success

� Simple, but quick first results

� Multiple reliability issues found

� Work to do for the developers

© Sioux Embedded Systems | Confidential | 10

System Under Test

Hardware Abstraction Layer
(LabVIEW)

Input (Hardware)

Test cases
(LabVIEW)

Control

Output
Log file

Test Framework
1st Increment

6

� Several defects found were already known:

� Customer issues

� Not reproducible -> no solution

� Now: developers could work on them

� And fix could be tested as well

� Several presentations given explaining the approach

� And… get clear what we are looking for!

� Primary functions should work reliable

Management buy-in

© Sioux Embedded Systems | Confidential | 11

Definition of Reliability Hit

© Sioux Embedded Systems | Confidential | 12

PF = Primary Function
Primary function: e.g. startup, acquisition
Non-primary function: e.g. printing, post-viewing

7

� LabVIEW is not that easy

� Provide general scripting language (Ruby)

� Ruby interfacing with LabVIEW via abstraction layer

� Development of test libraries was started

� Still only control, no verification

� Log file analysis after test (tools were used)

Increment 2
A language for the testers

© Sioux Embedded Systems | Confidential | 13

Increment 2
A language for the testers

© Sioux Embedded Systems | Confidential | 14

System Under Test

Hardware Abstraction Layer
(LabVIEW)

Input (Hardware)

Test cases + libraries
(Ruby)

Control

Output
Log file

Test Framework
2

nd
 Increment

8

� Logfile scanned during test case execution

� Determine pass/fail criteria

� Detect system states and act upon:

� Hot generator � extensive acquisition not possible

� Execute other test cases (e.g. power-cycle), until

� Generator has cooled down

� Log file analysis after test was still performed

� Still no software changes in the SUT, but existing
interfaces were available now

Increment 3
Logfile interpretation

© Sioux Embedded Systems | Confidential | 15

Increment 3
Logfile interpretation

© Sioux Embedded Systems | Confidential | 16

System Under Test

Hardware Abstraction Layer
(LabVIEW)

Input (hardware &
software)

Test Execution Environment
incl. test cases and library

(Ruby)

Control

R
e

p
o

s
it
o

ry

(T
e

s
t

c
a

s
e

s
 +

 R
e

s
u

lt
s
)

Test Framework
3rd Increment

Output

Result

Test Scheduler
(Ruby)

9

� Best practise:

� Test actions by external interfaces

� Test verification by log file and internal state

information

� System statistics extracted from logfile:

� Number of startups (succeeded and failed)

� Number of acquisitions (succeeded and failed)

Increment 3
Logfile interpretation

© Sioux Embedded Systems | Confidential | 17

� Reliability hits could be identified from logfile (semi-

automatic)

� Pareto charts

� Performance measurements
(timing info in logfile)

� Crow-AMSAA

Statistics

© Sioux Embedded Systems | Confidential | 18

10

Crow-AMSAA Failure Plot
Example

© Sioux Embedded Systems | Confidential | 19

Cum. Number of

startups

Cum.

Number

of failed

startups
Individual

testruns

LogLog scale

Crow-AMSAA Failure Plot
Example

© Sioux Embedded Systems | Confidential | 20

100 extra startups

10 failures

Best fit

11

Crow-AMSAA MTBF Plot
Example

© Sioux Embedded Systems | Confidential | 21

Monitor trend

Make predictions
Mean

Time

Between

Failure

� >100 reliability hits identified

� Which ones would have slipped through other tests?

� Which ones would the customer complain about?

� “Independent” analysis of hits:

� 8 would have been in system test, but not earlier

� 7 would not have been found, but customer would

compain (and fix would be necessary)

ROI

© Sioux Embedded Systems | Confidential | 22

12

� ROI:

(8 x X1) + (7 x X2) – costs > 0

� Costs (manhours + material) = 200K Euro

� X1: costs of defect found in system test: 10K Euro

� X2: costs of field defect: 200K Euro

� 80K + 1.4M – 200K � 1.2M Euro saved

� More money and time became available…

����Implementing/executing more tests

�More projects/products

ROI

© Sioux Embedded Systems | Confidential | 23

© Sioux Embedded Systems | Confidential | 24

Results

� Numerous reliability hits identified + solved

� MTBF measured and predicted

� Startup MTBF increased by factor 7.6

� Acquisition MTBF incr. by factor 18

� More testing hours on systems

� Customer satisfaction

� More projects wanted this approach

� Only 5 system test cycles remaining (was 15)

24

13

© Sioux Embedded Systems | Confidential | 25

Key success factors

� Choose right project at the right time

� Incremental development (early visible
benefit)

� Communication / ROI

� Clear and simple reporting (Crow-AMSAA)

� Hardware interfaces

�Low probe effect (not a single false alarm)

�Easy ported to different products

25

© Sioux Embedded Systems | Confidential | 26

Questions

26

14

www.sioux.eu

bryan.bakker@sioux.eu

+31 (0)40 26 77 100

Source of your development.

