
1

Design for Testability

TestNet

Najaarsevenement

Bryan Bakker

October 11th 2010

© Sioux Embedded Systems | Confidential | 2

Contents

� Sioux

� Intro

� What is Design for Testability (DfT)?

� Test Automation

� Design Rules

� Pre-requisites

� Watch out

� Conclusion

� Examples from embedded/technical domain but

concepts also hold for office domain

� Scope: integration and system testing 2

2

© Sioux Embedded Systems | Confidential | 3

About Bryan Bakker

� Test Architect

� Certifications: ISTQB, TMap, Prince2

� Member of ISTQB Expert Level on Test Automation

� Accredited tutor of ISTQB Foundation

� Domains: medical systems, professional security

systems, semi-industry, electron microscopy

� Specialties: test automation, integration testing, design

for testability, reliability testing

3

About Sioux

© Sioux Embedded Systems | Confidential | 4

HERENTALS

MOSCOW

NEDERWEERT

EINDHOVEN

UTRECHT

3

© Sioux Embedded Systems | Confidential | 5

Intro

� Device including HDD

� During test phase no serious HDD issues

� After release: HDD failures in field

�Customers return units (NFF)

� False alarms!

� SW not robust against HDD imperfections

� Firmware upgrade needed to prevent more returns

� Could this have been prevented?

� Simulate HDD imperfections

� find defects during development/test

� more robust SW/System 5

© Sioux Embedded Systems | Confidential | 6

What is Design for Testability
(DfT)?

� Definition:
Take testing into account during design/architecture
definition

� Main goals:
� More efficient testing (find defects earlier, automation)

� Increase coverage of testing (manual and automatic, make it
possible to detect other problems)

� Enable automatic testing

6

Cost of defect fix (Barry Boehm)

Requirements Design Implementation Test Operation

4

Examples

� Think of:
� Testing without HW (not finished or expensive)
� Simulate environment (for automatic testing or unfeasible environment)
� Replace mechanical switches/buttons (test automation)
� Support for test automation
� Negative testing (failures from HW or environment)
� Support for test/sw engineers (diagnosis)
� Logging/Tracing
� Test components in isolation (modular architecture)
� Support for integration testing (test for messages)
� Test without UI
� Reliability/Profile testing: record user actions and replay

� By
� Visibility
� Control

© Sioux Embedded Systems | Confidential | 7

© Sioux Embedded Systems | Confidential | 8

Visibility

� Visibility

� Usually: subset of system information is shown to
end-user

� DfT: interface defined to extract info from system

� Also for “hidden” info

8

5

© Sioux Embedded Systems | Confidential | 9

Visibility

� Normal transfer of information

9

� Offer information to test software:

� Define test interface (test hook) to inspect info from
Comp A

� On Comp A or Comp B or in between?

Comp A Comp B
info

Comp A Comp B

visibility

Test

SW

© Sioux Embedded Systems | Confidential | 10

Visibility

10

� Test interface on Comp A:

Comp A Comp B

Test

SWTest i/f

� Comp A is aware of interface

6

© Sioux Embedded Systems | Confidential | 11

Visibility

11

� Test interface on Comp B:

Comp A Comp B

Test

SW Test i/f

� Comp B is aware of interface

© Sioux Embedded Systems | Confidential | 12

Visibility

12

� Use wrapper or
message queue inspector (e.g. VxWorks)

Comp A Comp B

visibility

Test

SW

� Comp A and B are unaware of interface

� But not everything is sent to other components…

� Where to interface is design decision

7

© Sioux Embedded Systems | Confidential | 13

Visibility examples

13

� Extract all kinds of system information

� Temperature

� #Images passing through image chain

� Recording speed of recorder

� Mechanical movements verification

� Inspect messages (for integration tests)

� State information (of system or components)

� Logging (better inspection/analysis, tool support)

� Resource usage (cpu, memory, network)

� …

© Sioux Embedded Systems | Confidential | 14

Control

� Control

� Usually: system controlled by system interfaces like
user, environment, network, etc.

� DfT: interface defined to control the system

14

8

© Sioux Embedded Systems | Confidential | 15

Control

� Normal transfer of information

15

� Information altered by test software:

� Define test interface to control Comp B
- set information
- ignore control from Comp A (optionally)

Comp A Comp B
info

Comp A Comp B

Test

SW

control

© Sioux Embedded Systems | Confidential | 16

Control examples

16

� Trigger all kinds of system actions

� Push buttons (UI, mechanical)

� Set configurations

� Simulate events (motion events, alarms, hot temps)

� Mechanical movements

� Simulate HW failures/imperfections

� …

9

© Sioux Embedded Systems | Confidential | 17

Combined

� Normal transfer of information

17

� Information retrieved and altered by test software:

� Define get and set test interfaces

Comp A Comp B
info

Comp A Comp B

Test

SW

© Sioux Embedded Systems | Confidential | 18

Test automation

� Control used to trigger actions

• Best practice: as “low” as possible in the architecture
� close to hardware
� as much coverage as possible

� trade-off between costs and coverage

• Possible to test below the UI
� UI is volatile (except “mechanical UI”)

� Visibility used to verify expected result

• Best practice: use logfile (also evidence) or internal

system information

� Avoid UI information (volatile)
18

10

© Sioux Embedded Systems | Confidential | 19

Design Rules (examples)

� State visibility:

� Every component stores state information

� In one dedicated component

� Testcases can get this information

� Possibility: with one key-press � dump the complete system

information

(for defect analysis)

� Not to be used internally by system (no information hiding)

� State machines trace/log state transitions

� “easily” test the state machines with state-transition testing

� Determine coverage of testcases (n-switch coverage)

1919

© Sioux Embedded Systems | Confidential | 20

Design Rules (examples)

� Communication between each set of components visible

via interfaces (in tracing)

� Default functionality in VxWorks

� Communication can also be altered

� Used for integration testing

� All user actions are logged, and can be “replayed”

� Input for profile tests (software reliability engineering)

� Records error-guessing/exploratory tests for reproducibility

� Failures in HW to be simulated via (test i/f in) drivers

� Most projects start with: logging conventions

20

11

© Sioux Embedded Systems | Confidential | 21

Pre-requisites

� Early involvement of test discipline

� Influence on architecture/design
� By (test) architect
� Architecture must support effective testing

� Test requirements
� Functionality needed in the product to support testing
� Real requirements, need priority
� Implementation available on time

� Test interfaces
� Are deliverables of project
� Supported interfaces, thus maintained
� Used for automatic tests

� Test req/interfaces become part of the product
� Test functionality grows into supported functionality of the product

(Excel, XRays)

� Management commitment (DfT is an investment)

21

© Sioux Embedded Systems | Confidential | 22

Watch out

22

1. Disable test functionality in release versions?

� Like logging, tracing, test functions

� Different version, will behave differently

� Performance

� Issues in release version not reproducible in development

version

� Test functionality may still be needed

� Service/diagnostics/factory

� Problem analysis in the field

2. Testing via test interfaces � not the real thing

� Customer/environment uses different interfaces

� Decide where to interface (coverage � cost)
22

12

© Sioux Embedded Systems | Confidential | 23

Watch out

23

3. Beware: Probe Effect

� “unintended alteration in system behavior caused

by measuring that system” (wikipedia).

Be ware of these effects!

23

© Sioux Embedded Systems | Confidential | 24

Conclusion

� Design for Testability

� More efficient testing

� Increase coverage of testing

� Enable automatic testing

� Visibility & Control

� Part of design/architecture

� Nothing new! But hardly practiced in a structured way

� Beware: different in real world!

24

13

© Sioux Embedded Systems | Confidential | 25

Questions

25

www.sioux.eu

bryan.bakker@sioux.eu

+31 (0)40 26 77 100

Source of your development.

